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ABSTRACT We investigated whether dietary factors that are known to increase 1,25-(OH),-cholecalciferol production can
deplete plasma 25-OH-cholecalciferol. Plasma concentration of 25-OH-cholecalciferol, its metabolism in vivo and activities of
renal mitochondrial 25-OH-cholecalciferol 1-hydroxylase (1-OHase) and 25-OH-cholecalciferol 24-hydroxylase (24-OHase) were
measured in rats fed various amounts of calcium (Ca) and phosphorus (P). All diets contained 5 pg (200 1a) cholecalciferol per
100 g. For rats fed the “normal” diet (0.7% Ca and 1.2% P) the mean plasma 25-OH-cholecalciferol level was 11.0 + 0.8
nmol/L, and the mean 1-OHase activity was 30 + 5 fmol/(mg-min). All rats fed the low Ca (0.014%) diet had 1-OHase activities
above 200 fmol/(mg-min) and undetectable plasma 25-OH-cholecalciferol levels (<2.5 nmoV/L). The chi-square test interrelating
plasma 25-OH-cholecalciferol and dietary Ca showed statistical significance (P < 0.001). The high activity of 1-OHase that
resuited from dietary Ca restriction increased utilization of 25-OH-cholecalciferol to the point of causing depletion of this metabolite

* dietary calcium + vitamin D requirement < 25-OH-cholecalciferol 1-hydroxylase

Vitamin D is acquired in mammals by exposure of
the skin to ultraviolet light or by ingestion of preformed
vitamin D in food. Most vitamin D in plasma exists as
25-hydroxycholecalciferol (25-OH-cholecalciferol),

-which circulates in nanomolar concentrations. In the
vitamin D-sufficient state, 24,25-dihydroxycholecal-
ciferol is also present in nanomolar concentrations. The
only metabolite of 25-OH-cholecalciferol with undis-
puted bioactivity, 1,25-dihydroxycholecalciferol [1,25-
(OH),-cholecalciferol], is present in picomolar concen-
trations. In normal humans, production of 1,25-(OH},-
cholecalciferol by the renal enzyme 25-OH-cholecal-
ciferol 1-hydroxylase (1-OHase) has been estimated by
in vivo tracer-kinetic techniques to be 0.25 to 1 pg/d
(1, 2). In an adult with calcium nephrolithiasis, 1,25-
(OH),-cholecalciferol production was reported to me-
tabolize as much as 6.9 pg vitamin D per day (2). This
exceeds the U.S. adult recommended dietary vitamin
D? allowance of 5 pg/d (3). There are many reports in
the literature of patients with low plasma 25-OH-vi-
tamin D and normal or high 1,25-(OH),-vitamin D (4—
11). Although it seems reasonable that a high rate of
1,25-(OH),-vitamin D production may reduce 25-OH-

vitamin D levels when vitamin D supply is marginal,
we are not aware of previous studies designed specifi-
cally to demonstrate such a relation. In the present
experiment, we set out to test the hypothesis that re-
duced plasma 25-OH-cholecalciferol levels in rats can
result from increased activity of 1-OHase.

MATERIALS AND METHODS

Sixty male Wistar rats were obtained at 120 g wt and
housed in hanging wire cages (two rats per cage) in a
room lit by incandescent light. They were divided equally
into five diet groups, each fed one of the following diets
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TABLE i
Composition of the lew calciem, bow phespharas dier (A4 F
Component Aot
£kg
Casein’ 140
Sucmmse e
Comm ail 50
Minerals? LL.9TL
Vitamins® LAlr7

"Thie diet was prepared by Teklad Research Diets, Madison, Wl

fasein was “'vianuin-free'” tes,

‘Minerals added [g/kg dist] wese: KCL 117, MalCl, £0; NaHOO,
L MgS0,, 11, fernic cicpage, USF [16.7% Fel 1.2, Mpr5O,-HA0,
0152, K1 (L0384, ZnCl, 02254, CusO,-5H.0, 0,013,

"Witamins added |g'kg diet] were: p-aminobenzoic acid, 0302, o-
calcium pantothenate, 0000, choline chlarsde, 1.0, inositel, 1.0; nia
cin, (LIS, pyridoinee-HCT, 0,0035; niboflawin, 0.0045, thiamin HC,
0.0035; rerinyl palmitaee |S00000 wigl, 0087, DL-a-tooophervl ace-
take |S0H) ivgl (111 menadione, 0006, cholecaleilerol, 0.005,

ad libitum for 4 wk. Diet A (TID7R3BR, Teklad, Madi-
son, WI contained 0.014% elemental Ca, 0.18% P and
5 pg (200 w) cholecaleifernl per 100 g (Table 1). We
prepared the remaining diets by adding inorganic phos-
phate [NaH,;PO, + H,0, "Baker Analyzed Reagent,” |.
T. Baker Chemical Co., Phillipsburg, NJ| andfor cal-
cinm [caleium carbonate, USE: |. T. Baker Chemical
Co.} to diet A so that total diet Ca and P were as follows:
diet B, 0.014% Ca and 1.2% P; diet C, 0.7% Ca and
1.2% P, diet D, 2% Ca and 1.2% P; diet E, 2% Ca and
0.18% P, To avoid spillage, powdered diets were tightly
pressed into narrow-necked porcelain dishes. For each
group the amount of diet caten was weighed for all
feedings cumulatively.

Twenty-five hours before they were killed, the rats
were anesthetized with ether, a 1-mL blood sample was
taken by heart puncture (for assay of 25-0H-cholecal-
ciferal, calcium and phosphate} and each rat was in-
iected slowly via the jugular vein with 0.1 mL ethanaol
containing 500,000 dpm 25-]*Hfhydroxycholecalciferol
(10 Ci/mmol, TRK 396, Amersham, Oakville, Ontario).
Blood was obtained by heart puncture under ether ancs-
thesia for measurement of plasma 25-0OH-"H|cho-
lecalciferal, 1,25(0H);-|"H|cholecalciferal and
24,25(0H),-*H|cholecaleiferol concentratioms and kid-
neys were removed for assay of 1-OHase and 24-OHase
activities. Plasma 25-OH-cholecalciferol levels were
measured by binding-protein assay subsequent to
methanol/chloroform lipid extraction and Sephadex LH-
20 minicolumn chromatography (12). Caleium was
measured by atomic absorption spectrophotometry and
phosphate by reaction with molybdic acid, 1-OHase
and 24-0OHase sctivities were measured as described
previously [12). In summary, renal mitochondria were
prepared in 150 mm KCl, 20 mm HEPES, 10 mam L-
malic acid, 2 mm MgS0,, | mm dithiothreitol and 25
nM EDTA. A I-mL aliquot containing about 5 mg mito-

chondrial protein was incubated at 25°C for 15 min in
the presence of 500 nmol/L nenradioactive 25-0H-cho-
lecalciferol [courtesy of Dr. M. R. Uskokovic, Hoff-
mann-LaRoche Inc., Nutley, NJ| plus 50,000 dpm 25-
OH-{"H|cholecalciferol. The reaction was stopped and
the lipid extraction procedure started by adding 2:1
methanol:chloroform. Extracted 25-0OH-*Hchalecalei-
ferol, 1,25/{0H);-"Hjcholecalciferol and 24, 25[0H-
P*H|cholecalciferal were separated by continuous-de-
velopment thin-layer chromatography (TLC) on silica
developed with 1:1 benzene:ethyl acetate and meas-
ured by scintillation counting, 1-OHase and 24-OHase
activities, expressed in femtomoles per muilligram mi-
tochondrial protemn per minute, were calculated from
these measurements. Radioactive metabolites gener-
ated in vivo from 25-OH-["H|chalecalciferol were ex-
tracted from plasma and chromatographed by the same
techniques.

In vivo metabolism of 25-0H-PH|cholecalciferal to
its dihydroxy metabolites in plasma was expressed as
the percentage of *H appearing as 1,25-(0H}-cholecal-
ciferol and 24,25-{0H, -cholecalcifernl. We validated the
extraction and chromatographic procedures by using
various known mixtures of radioactive 13-0OH-chole-
caleiferol, 24,25-|0OH);-cholecalciferal and 1,25-|OH),-
cholecalciferol in bovine serum albumin solutions. The
extraction and TLC procedures resulted in recoveries
of the metabolites in the proportions expected. The
relation of observed versus expected percent 1,25-/0OHJ,-
MH|cholecaleiferal and 24,25-(OH,|-*H|cholecalciferol
in the mixtures gave slope 1.05 and intercept 0.08%,
r=0.99 a = 12. Samples produced under “"blank" in-
cubation conditions jusing medium alone, liver mito-
chondria or renal mitochondria whose 1-OHase had
been denatured with two short microwave burses [to
boiling]| were analyzed by high performance liquid
chromatography or TLC. None of the blank samples
yielded oxidation or metabolite peaks; only unchanged
15-0H-P"H|cholecaleifera]l was present.

The chi-square test was carried out according to Dixon
and Masscy |14|. Comparisons of the control diet group
(C) with the other diet groups were conducted using
formulas for the r-statistic and degrees of freedom that
corrected for differences in variance (14]. Decision val-
ues for the t-statistic were from the tables of Dunnett
(15} for multiple comparisons with a control.

RESULTS

The mean daily consumption of diet for the groups
ranged from 13.9 to 15.5 g/rat over the 4-wk period of
feeding (Table 2], representing an intake of chalecal-
citerol of approximately 0.75 pg/d per rat. Animals in
group C, fed normal Ca and normal P, had the greatest
weight gain of all groups, the highest plasma 25-0H-
cholecaleiterol level and the highest mitochondrial 24-
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TABLE 2

Effects of diet on 25-0H-chofecalcifered metabodism fo vivo amd i vitro®

(BT
A B I (] E

Thiet

Caloium, g/ 100 g 0l4 nii4 07 38 10

Phosphate, g/ 1800 g (.18 L2 1.1 1.2 0.18

Amit. ewten, g/fd-ral [EN] 4.6 15,5 149 14.5
Final rat wt, £ 114 = & 28 = 3 26H + & 115 = 42 216 = #
Flasma

Calcinm, mrmalfL AT = 010" 1.8 = 0 1.5%3 = .03 A0 = 0,017 334 = D4*

Fhasphate, memnd/L 138 = DS 157 = 0.04 256 = 007 A0 = 0,08 1.54 = QO™

25-0HD . neeel/ LY i =155 i = (e 35 =02 0= oH
In wivo metzholism

'H as 1,254 0H|-cholbecalcifernl, % ifl = L 2.8 = 1.27 OB £ ] 13 = 0.2 1.] = QP!

T as lﬂ-,?j'lﬂ}ih-:hul::ﬂ:dml. % <3 {37 55 £ L5 Hé = 0% EE = 5
Erzymies

b-Hase, fmal/img-ming® f6H = AP 676 = A | =5 i o+ 3 Im=3

33-0Hase, fmoliimg imim 422 31 = @ 150 = 24 40 & o* 50 = B*

There were |2 s in each group, Results are means = s
thignificantly different from the normal dige group ©, © < 001

The undevectable valoes [<2.5] were assigned a valee of 1.0 nmol/L.

“The undetectable valoes | <00 were ataigned & value of § fmalf|mg: min].

OHase activity. Group A, fed the low Ca and low P
diet, and group B, fed the low Ca and normal P diet,
both had low plasma Ca and low plasma 25-OH-cho-
lecalciferol in conjunction with high in vivoe tracer me-
tabolism o 1,25-{0H),-[*H]cholecalciferol and high
mitochondrial 1-OHase, The high dietary Ca groups,
D |fted normal P) and E [fed low P), both had lower
plasma P levels than group C, but mitochondrial 1-
OHase results were not significantly ditferent from those
in group C; this is in contrast to the in vivo situation,
where there was significantly greater synthesis of 1,25-
(OH},-|*"Hicholecalciferol in the low P diet group E. Fur-
thermore, plasma 25-OH-cholecaleiferol for both high
Ca groups was low in relation to the normal diet group
but significantly higher than the undetectable levels of
the low Ca diet groups, A and B. For all diet groups
both in vive and in vitro, no metabolites of 25-0OH-
["H]cholecaleiferol were observed other than 1,2540H],-
["Hicholecalciferol and/or 24,2540H),-*Hicholecaletferal.

Results for plasma 25-0H-chaolecaleiferol and renal
1-0OHase activity for all rats are presented in Fig. 1. All
rats fed low Ca diets [A and B] had undetectable levels
af 25-0H-cholecalciferol and their 1-OHase acrivities
were greater than 230 fmol/{mg-min|. Rats fed adequate
or high Ca diets (C, D, E) had 1-DOHase activities below
60 fmol/{mg min| and a wide range of plasma 25-0OH-
cholecalciferol levels.

To demonstrate statistically the relation between diet
Ca and plasma 25-0OH-cholecalciferol, we used the chi-
square test (Table 3). This allowed us to combine, for
a single statistic, data for all diet groups and made it
unnecessary to use the default values to fill in for un-
detectable results, For this analysis, the rats were grouped

according to plasma 25-OH-chaolecalciferol level [meas-
urable or undetectable) and diet Ca |low vs. normal ar
high Cal. We chose the detection limit for 25-0H-cho-
lecaleiferal to divide the sample population because it
was i well-defined point and because there was no other

]

ml = 3
RRTES

Plaarna 25-0H-chokecalcriersd {nmokd )
3
i

*.%tl i QL". A &

T ]
200 1000 1500
' F50OHD OHas | mamgliming
FIGURE I Plasma 25-OH-cholecalciferol level versus renal
mitochondrial 1-0Hase activities for rats fed dier (OF A, [l
B, AT, |[C0 13, | E. Dashed lines indicate detection limits
for 25-0H-cholecalciferal (horizontal line) and 1-OHase [ver-
tical line|. For clarity, points below detection limits are plot-
ted away from the dng::ﬂnlmr.ﬂ- The arrows indicate the val-
ves of 25-0H-cholecaleifernl and 1-OHase that divide the
sample population into the four groups that ceincide with
the chi-square analysis [Table 31

‘od
g

a
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TABLE 3

Chi-sguare test showing suatber of rats observed with specified
combinstions of plazsma 25-0H-cholecaleiferal and diet calciom”

Dot caledim®
L7 or
25-0H-chalecalcidesal 2% 0.0a%
sirral /L
<25 & |18} 4 (11
=15 A0 |18 o (13l

YChi sguare = 36,7, ' < 0,001

Walues in parentheses sre expecied frequencies according w the
null hypothesis. Il there were no relation between 25-0H-cholecal-
citerol and dier calcinm, the oumbers in the table would be approx-
imately those I parentheses

15-0H-cholecalcifernl level that clearly split the sam-
ple population, Since only the rats with low diet Ca
had 1-OHase levels over 200 tmol/{mg-min), the chi-
square groupings for diet Ca are identical to those that
would have been obtained if instead the sample pop-
ulation had been divided according to 1-OHase value
|over or under 200 fmol/|mg-min)| as indicated by the
arrows in Fig. 1. Although the consumption of food and
cholecalciferol was very similar for the five diet groups
[Table 3|, those ingesting a low Ca diet had undetect-
able plasma 15-OH-cholecaleiferol whereas those in-
gesting normal or high Ca diets had higher plasma 25-
OH-cholecaleiferal levels,

DISCUSSION

The tindings demonstrate that vitamin D require-
ment was increased when diet calcium was reduced.
Low calcium intake stimulaved 1-OHase activity in our
rits to such a degree that the otherwise sufficient chio-
lecalciferol intake was not enough to maintain plasma
15-0OH-cholecalciferol at detectable levels.

The results show that 25-0H-cholecalciferol and 1-
OHase are strongly interdependent. For a number of
reasons we conclude that it was the low Ca-related
increase in 1-OHase that depleted 25-0OH-cholecal-
ciferol: 1| Vitamin D deficiency per se does not increase
serum 1,25-|OHl-cholecaleiferol concentrations |16},
21In humans, 1,25-({0OH),-vitamin D synthesis can con-
sume & large part of |1, 2| and may even exceed |2) the
recommended daily dietary allowance for vitamin I,
31 OQur in vivo findings also support our arpument. More
than 20% of the tracer in circulation was 1,25-/0H),-
[*H|-cholecalciferal (Table 2). In view of the short in
vivo half-life and large volume of distribution of 1,25-
(OH)y-cholecaleiferal compared to 25-OH-cholecalci-
ferol {17, this is conclusive evidence that 1-OHase ac-
tivity was the major factor depleting 25-0H-chaolecal-
ciferol in our rats,

Although it is generally recognized that low dietary
P stimulates 1,25 OH),-cholecaleiferal production, we

did not observe effects of dietary P on 1-OHase in vitro,
For low Ca groups A and B, we may not have observed
P effects on 1-0Hase activity because of the overriding
effects of severe Ca depletion. For the two groups with
high Ca intakes, the low P group (E| had significantly
higher plasma 25-0H-cholecalciferol levels and higher
in vivo metabolism to 1,25-{0H)-*Hcholecalciferol
than the high P group (D). The effects of different levels
of dietary P may also have been modified in rats fed
high Ca diets by the formation of complexes of Ca and
P either in the intestinal lumen or after absorption,
with subsequent reduction in their biological availa-
bility.

Cholecaleiferol intake was vintually identical for all
diet groups because all the diets were prepared from
the cholecalciferal-containing diet (Al and intake of diet
was similar for all groups. Differences in plasma 25-
DH-cholecalciferal could in theory be due to differ-
ences in the handling of cholecaleiferol at a number of
stages, For a given intake of cholecalciferol, variations
in rates of intestinal absorption and hepatic 25-hy-
droxylation could affect 25-OH-cholecalcifernl levels
(18], Other enzymes such as 24-0OHase could also in-
fluence plasma 25-0OH-cholecalciferol levels. However,
in the present study increased 24-OHase activity re-
gulted from increased plasma 25-0OH-cholecaleiferal
(Table 2] and was not the primary determinant of its
concentration. Since plasma 25-0H-cholecalciteral
concentrations vared widely among the groups in which
diet Ca was adequate and 1-OHase activity was low, it
follows that other undetermined mechanisms might
also affect 25-0H-cholecalciferal levels.

Low serum 25-0OH-vitamin [ concentrations in as-
sociation with high 1,25-/0OH)s-vitamin [ have been
attributed to feedback tnhibition of hepatic cholecal-
ciferol 25-hydroxylase by the hormonal product |19-
21]. Evidence for this is based on low serum 25-0H-
vitamin D levels in patients receiving 1,25-(0OH),-
cholecalciferal therapy (20) and on in vitro inhibition
of cholecaleiferol 25-hydroxylase by 1,25-(0OH),-chole-
caleiferol (21). More recent studies have concluded,
however, that chronic 1,25-{0OH);-cholecalciferal
administration lowers serum 25-0OH-cholecalecifero] by
increasing the metabolic clearance of 25-0OH-cholecal-
ciferol and not by decreasing its production |22, 23).

It is relevant to note thae 1,25-/0H),-cholecalciferal
is involved in a positive feedback loop whereby it can
increase fourtold the levels of the cholecaleiferol pre-
cursar 7,8-didehydrocholesteral in rat skin [24). Esvelt
et al. (24| proposed that this feedback mechanism could
protect animals with high 1-OHase activity from de-
pleting their stores of 25-0H-cholecalciferol. However,
this mechanism could not have helped our animals,
which were kept away from ultraviolet light sources.
If our animals had been exposed to ultraviolet light,
their 25-0H-cholecalciferol concentrations would not
have been as drastically reduced by caleium deprivation
as we observed.
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Our findings should be considered when interpreting
plasma values of vitamin D metabolites in hypocal-
cemic and osteomalacic conditions. 25-OH-cholecal-
ciferol depletion has classically been thoughet of as due
to a low vitamin D supply; however, our study shows
that it can also be secondary to increased metabolism
of 25-0H-chaolecaleiferal o 1,25-{0H];-cholecalciferal.
Thus, in & hypocalcemic patient with decreased plasma
215-|0OH|-cholecalciferol and mcreased 1,25-00H],-cho-
lecalcifernl concentrations, these apparently anoma-
lous metabolite levels could be due to increased |-OHase
activity secondary to calcium deficiency, causing in-
creased 1,25-(0H|y-cholecalciferol synthesis and deple-
tion of 25-0H-cholecalciferol stores. This scquence of
adjustments might explain the metabolite values oh-
served in many reported patients [4-11),

Gascon-Barré et al. (25] reported a study in which
patients with urolithiasis were placed on diets con-
taining either 1000 or 300 mg Ca daily. They found
that with the low Ca intake, circulating 25-0OH-vitamin
[} was significantly lower and 1,25-/0H];-vitamin D
significantly higher than with the higheér Ca intake,
Since the rate of 1,25-[0H)-vitamin D synthesis was
not estimated, changes in metabolite distribution vol-
ume or in 25-0H-vitamin D synthesis could not be
excluded as possible explanations, In light of our [ind-
ings, their ohservations could be attributed to increased
1,25-[OH},=vitamin [ production.

We conclude that when ecalcium homeoseasis is
stressed, as by dictary calcium restriction, increased
production of 1,250OH)y-cholecalcifernl causes a sig-
nificant increase in 25-0H-cholecalciferol utilization,
When intake of cholecalciferol is marginal, the added
demand for 25-0H-cholecalciferol as substrate could
result in vitamin D insufficiency.
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