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Immunosenescence, the progressive decline in immune function

that develops with age, results from cumulative alterations in

critical B- and T-cell subpopulations. Decreases in circulating

memory B cells and in germinal center formation are evident in

the elderly, possibly due to diminished follicular dendritic-cell

function. T-cell dysfunction is associated with reduced thymic

generation of naı̈ve T cells, virus-induced expansion of terminal

effectors and increased levels of memory cells producing type I

and II cytokines. The diversity of the T-cell receptor repertoire is

diminished by the first two changes, and elevated type I

cytokines might contribute to the pro-inflammatory cytokine

milieu present in the elderly.
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Abbreviations
FDC follicular dendritic cell

IFN interferon

IL interleukin

LIF leukemia inhibitory factor

M-CSF macrophage colony-stimulating factor

NK natural killer

OSM oncostatin M

SCF stem-cell factor

TCR T-cell receptor

TEC thymic epithelial cell

TNF tumor necrosis factor

TREC TCR rearrangement excision circle

Introduction
Current analysis of the increase in cancer incidence that

accompanies aging primarily focuses on the multistep

process of tumorigenesis. Yet, progressive T- and B-cell

functional deficits develop with aging, a decline termed

immunosenescence [1,2,3�], which may also play a role.

With aging, the thymus involutes and the supply of naı̈ve

T cells gradually falls. The cumulative expansion of

memory cells increases the production of type I and type

II cytokines, with inflammatory mediators often predo-

minating. The T-cell receptor (TCR) repertoire becomes

skewed and oligoclonal as terminally differentiated effec-

tor subpopulations accumulate. These changes alter both

humoral and cellular immune competence. This review

will summarize recent work on the changes of the

immune system with aging, with a particular focus on

changes in T-cell subpopulations and their relevance to

cancer susceptibility and therapy.

A key problem in studies of aging has been that of

distinguishing changes prognostic of susceptibility to

infection, autoimmunity and cancer from those changes

resulting from these very conditions. Most of the studies

are cross-sectional, comparing aged and younger groups.

Furthermore, the health status of many of the elderly in

these studies is poorly defined. This concern has been

addressed by longitudinal studies of the aged and by the

establishment of performance status criteria under the

SENIEUR protocol, defining the healthy aged [4]. Long-

itudinal studies of the healthy aged have identified

immune risk phenotypes (IRPs) by correlating immune

changes, such as low CD4þ cell numbers and inverted

CD4:CD8 ratios, with poor prognosis [5,6]. Although

variations have been found [3�], these studies provide

the strongest characterization of immune system changes

during aging.

Alterations in hematopoiesis, and in innate
and humoral immunity
Cells of the immune system are constantly renewed from

hematopoietic stem cells. With age, a reduction in the

overall capacity for renewal of these stem cells as a whole

has been observed [7]. The proliferative activity of bone

marrow (measured by the proportion of Ki67þ cells) peaks

in middle age and then gradually decreases, although

reductions in marrow cellularity are found only with

extreme age [8], perhaps associated with increased apop-

tosis [9]. Consistent with this, CD34þ stem cells mobilize

less effectively in the elderly when compared to younger

donors [10]. Moreover, both a reduction in commitment

to lymphopoiesis [11] and a reduction in the ability of

marrow stroma to support lymphopoiesis have been

reported with aging [12]. Thus, some of the deficits of

immunosenescence begin with stem cells.

Within the innate immune system, natural killer (NK)

cells play an important role in inhibiting tumor growth and

metastases. In a prospective study, following 3500 middle-

aged and elderly Japanese over 11 years, the incidence of

cancer was increased in those with lower initial NK cyto-

toxic activity [13]. In gastric cancer patients, lower NK

cytolytic activity at diagnosis correlates with higher tumor
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volume, metastases and worse prognosis [14]. Unlike T

and B cells, the absolute number of NK cells is increased

in aged individuals in comparison to young or middle

aged groups, and IFN-g production and phagocytosis are

also increased [15,16]. Total NK-cell cytotoxicity is

stable, however, so the NK-cell cytotoxicity on a

‘per-cell’ basis is impaired, as is the response of NK cells

to IL-2 [15]. Bonafe [17] suggested that the age-asso-

ciated increases in NK cells and in T cells expressing NK

receptors play a beneficial role in immunosurveillance.

Individuals with elevated levels of these effectors might

blunt the growth of neoplastic cells.

Humoral immunity in the elderly often involves an

increase in autoantibodies [18] but a concurrent reduction

in vaccine responses [19]. Although T-cell dysfunctions

play a significant role in age-related humoral immune

changes [20], alterations in B cells have also been

detailed. In murine studies, a progressive decline in

germinal center formation is observed with age [21]. Aged

follicular dendritic cells (FDCs) stimulate B cells 70%

less well than those from young mice [22�]; diminished

FDC function could result in reduced persistence of

antigen deposits and correspondingly reduced mainte-

nance of functional memory B cells. Indeed, the fre-

quency of circulating CD27þ memory B cells is

reduced in the infirm elderly, although the deficit is minor

in healthy centenarians [23,24]; reductions in CD27þ

memory B cell numbers in nursing home residents not

only correlate with low T-cell numbers but also with

reduced T-cell functions [24]. A decrease in CD5þ B

cells, which are associated with T-independent antibody

production, was also found with aging, and there was also

a decrease in expression of CD40 on B cells, a molecule

needed for cognate interactions between B and T cells

[23]. Thus, the induction of both T-independent and T-

dependent B-cell responses may be reduced, and the

persistence of memory B-cell populations may be limited

in the elderly.

Alterations in cellular immunity
The critical changes characteristic of immunosenescence

occur in the T-cell populations. Although overall numer-

ical shifts have been observed [25], it is the changes in

subpopulations that underlie the functional deficits of

aging and exacerbate recovery from therapy. Three pri-

mary changes have been observed: a decline in the

number of naı̈ve cells due to diminished thymopoiesis;

an increase in the number of memory cells resulting in

increased cytokine production; and a dysfunctional accu-

mulation of activated effector cells of limited T-cell

repertoire occupying T-cell space (see Figure 1).

Reduction in naı̈ve T cells and thymopoiesis

There is now evidence that thymopoiesis continues

throughout life at some level, despite the gradual involu-

tion of the thymus [26]. Ongoing thymopoiesis provides

a continuing supply of phenotypically naı̈ve T cells

(CD45RAþ, CD62Lþ, CD27þ, CD28þ, CD11adull;

[27]). These data are substantiated by the measurable

presence in the peripheral blood of T cells containing

TCR rearrangement excision circles (TRECs), non-

replicating episomal DNA circles generated during

thymocyte development. Because TRECs are rapidly

diluted following activation-induced T-cell prolifera-

tion, their presence is consistent with recent thymic

emigration. The critical consequence of thymopoiesis is

the generation of a broad repertoire of diverse T-cell

receptors. Spectratype analysis has demonstrated that

the T-cell receptor Vb repertoire diversity of naı̈ve

CD4þ and CD8þ T cells is maintained in the elderly

[28]. Overall diversity of the total T-cell repertoire in

the elderly is skewed and marked by oligoclonal expan-

sions, however, due to the limited frequency of naı̈ve

cells. Although the thymus remains functionally com-

petent, the diminished export rate associated with

aging is insufficient to replace naı̈ve T cells lost daily

from the periphery. This loss results in a gradual

dwindling in naı̈ve cells and, hence, in repertoire

diversity (Figure 1).

Involution of the thymus with age involves complex

changes in gene expression, as the thymus is a chimeric

organ that contains cells of several lineages [29]. In

thymocytes, no changes in mRNA levels of pre-Ta and

its transcriptional regulator HEB have been found with

aging. The expression of E2A, a transcriptional regulator

critical for TCRb rearrangement, however, declines with

age, whereas expression of LMO2 (a negative regulator of

E2A activity) increases [30��]. Recombinase-activating

gene 1 (Rag1) and Rag 2 expression also decline in aged

mice, but cocultures have demonstrated that this is con-

trolled by thymic epithelial cells (TECs; [31]). A compar-

ison of thymocyte-depleted stromal cell preparations

from young and aged mouse thymuses has found

decreased mRNA for IL-7, M-CSF and SCF, as well as

for the transcriptional factor Foxn1 (the nude gene, critical

for TECs during organogenesis [30��,32]). Both connexin

42 and keratin 8 (also associated with the cortical stroma)

were stable at seven months of age, suggesting that the

reduction in IL-7 was not merely a decline in the relative

proportion of cortical TECs, but a specific change in the

regulation of IL-7 expression [30��]. Consistent with

these findings, injection of IL-7, but not SCF, resulted

in an increase in thymocyte numbers in aged mice [33].

By contrast, in human studies using RNA from total

thymus tissue, IL-7 does not decrease, and in addition,

SCF and M-CSF increase, together with leukemia inhi-

bitory factor (LIF), oncostatin M (OSM), and IL-6 [34].

Interestingly, it was found that adipose tissue expresses

LIF, OSM, SCF, IL-7, IL-15, IL-6 and M-CSF mRNA at

levels equal to those seen in aged thymic tissue. As

adipose tissue replaces thymic volume during aging in

man, this finding suggests that adipose tissue might exert
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an additional level of control on thymic function. In vivo
administration of OSM, LIF or IL-6 produces thymic

involution in mice, apparently by increasing corticoster-

oid production that affects cortical thymocytes [34,35]. In

man, plasma IL-6 levels significantly increase with aging

[36�], perhaps with comparable effects.

Increase in memory T cells

The second major change in T-cell populations with age

is the increase in memory T cells with defined cytokine

phenotype and consequent changes in the overall pro-

duction of cytokines. With increasing age, memory and

activated effector T cells predominate, both due to the

accumulation of memory responses following antigen

activation and from homeostatic proliferation to maintain

T-cell levels. IL-2 production in vitro in stimulated T

cells is reduced in most studies using SENIEUR donors

[3�]. This change may result from the loss of naı̈ve

populations, which are high producers of IL-2 [37], and

the expansion of memory T cells. In a recent study of

healthy (but not SENIEUR assessed) elderly, the fre-

quency of CD8þ cells producing type 1 cytokines (IFN-g
and TNF) increased with aging, particularly in the ‘cyto-

toxic’ CD28�CD8þ subset [38�]. Similarly, the frequency

of type 2 (IL-4 and IL-10) cytokine-producing memory

CD8þ cells, although much lower than type 1 producers,

also increased with aging [38�]. Such studies are limited

by being primarily cross-sectional rather than longitudi-

nal, and are complicated by a lack of consistency in T-cell

stimulation and criteria for inclusion as elderly. None-

theless, repeated observations have suggested that ele-

vated levels of inflammatory cytokines (IFN-g, TNF-a)

exist, and this could contribute to the overall pro-inflam-

matory state in many of the elderly, whereas an increased

number of IL-4-producing cells could be driving auto-

immune B-cell hyperactivity.

Figure 1
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Young and aged thymocyte populations. The upper cylinder represents the peripheral T-cell compartment in the young, and the lower cylinder

represents the smaller T-cell population found in the elderly. Naı̈ve (pale blue), memory (mid-blue) and activated effector cells (dark blue) are found

at both ages, but the proportions change. The naı̈ve cells comprise the largest proportion of T cells in the young, but are relatively few in the

elderly. These naı̈ve cells are the product of the thymus, which is large in the young but progressively diminishes with age. Naı̈ve cells have the

greatest TCR repertoire diversity, as indicated by the range of colors on the cells. Upon activation, naı̈ve cells move into the memory pool, where

they may undergo peripheral expansion (circular arrow). The memory population is the source of most type 1 and type 2 cytokines. The enlarged

memory component in the elderly may give rise to the increase in cytokines observed. Overall, the repertoire of memory cells in the elderly is less
diverse than in the young due to a reduced input from the small naı̈ve cell population. Upon repeated stimulation, memory cells give rise to

terminally differentiated effectors. These activated effectors have the most severely limited repertoire within the three T-cell pools. Dysfunctional cells

of this oligoclonal population accumulate in the elderly.
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Accumulation of terminally differentiated effectors

The final change in T-cell populations is the accumula-

tion of terminally differentiated effector cells, in partic-

ular virus-reactive cells, with extremely limited TCR

repertoire diversity. Longitudinal studies under the

SENIEUR protocol show inversion of the CD4:CD8 ratio

associated with increased mortality [6]. Individuals with

an inverted ratio had not only a reduction in CD4þ T-cell

levels but also a doubling in CD8þ T cells, dominated by

cell populations that were CD28�,CD27�,CD45RAþ,

CD57þ [39��,40�]. This is the phenotype of activated

effector CD8þ T cells, which downregulate CD27 and

CD28 following repeated cycles of stimulation. These

cells have shortened telomeres [41] and a limited pro-

liferative capacity [42]. The majority of these cells are

clonally expanded populations reactive to cytomegalo-

virus (CMV) and Epstein-Barr virus (EBV) determinants,

as shown by tetramer assays demonstrating the binding of

viral peptides [39��,43�]. These cells are nonetheless

dysfunctional, responding with low levels of IFN-g when

stimulated by viral antigens. Thus, by dominating the

T-cell population these dysfunctional CD8þ cells may

reduce the repertoire of T cells available for responses to

infection or neoplasia.

Reduced immune reconstitution after cytoreductive

therapy

The problems affecting T-cell populations in the elderly

are aggravated by cytoreductive cancer therapies that

require immune repopulation. Chemotherapy and trans-

plant conditioning regimens used for cancer therapy

produce a severe reduction in all lymphocyte populations

[44]. With age, the recovery of normal lymphocyte levels

is progressively retarded [45,46]. Pediatric populations

undergo thymic rebound and generate high numbers of

naı̈ve T cells within a few months [45,46]. Adult popula-

tions, by contrast, recover only after years [47]. The

generation of new thymic emigrants, as measured by

peripheral TREC-bearing T cells, is inversely propor-

tional to age, with the recovery of naı̈ve cells after the fifth

decade being severely compromised [48]. Similarly, in

murine studies, thymic stroma in aged hosts generates

fewer T cells than that of young hosts [49]. Because of

deficits in naı̈ve cell generation, post-transplant T-cell

populations characteristically include primarily memory

phenotype cells, with high frequencies of dysfunctional,

terminally differentiated CD8þ T cells expressing CD57,

but lacking CD28 [50]. Accompanying these population

shifts, the TCR repertoire diversity is limited and oligo-

clonal post-transplant [47,51].

Cytoreductive therapies age the immune system. Cer-

tainly, the cumulative dysfunctional changes occurring

over decades can be replicated in a few months following

cytoreduction. This similarity underscores the critical role

of thymic function in normalizing T-cell subpopulations,

repertoire and function.

Immune surveillance in the elderly
Having outlined the broad spectrum of immune system

changes accompanying aging, we return to the original

question of the role of these changes in cancer suscept-

ibility. Studies of knockout mice have clearly established

a critical role for the immune system in controlling

spontaneous tumors. As many as 50% of aged IFN-g�/�

or perforin�/� mice develop spontaneous lymphomas,

lung adenocarcinoma or sarcomas [52��]. Crossing tumor

suppressor heterozygous p53þ/� mice onto a perforin�/�

background markedly increases the frequency and re-

duces the age of onset of lymphoma [53], suggesting that

the tumor suppressor deficits that occur progressively dur-

ing normal aging are amplified by the absence of immune

surveillance. Immune deficiency in man, however, does

not result in the severe consequences of the murine

knockout models. Individuals with HIV-depressed

immune function do not have an increased incidence of

all malignancies, but mainly lymphomas or virus-based

Kaposi’s sarcoma; age-related cancers by contrast are pre-

dominately carcinomas [54]. Clearly much remains

unknown about the successful mechanisms of immune

surveillance in the aged. The prevalence of metastatic

cancer at autopsy peaks at 75–90 years and declines in

95–99 year olds and centenarians [55]. Indeed, immune

changes with aging may result in more indolent tumor

growth and lower levels of metastases than in younger

individuals, as in breast and prostate cancer [56]. Perhaps

an increased understanding of the immune system changes

in these extreme elderly may provide new insights into

the complex relationship between immunity and cancer.

Conclusions
Our understanding of age-related immune deficits has

rapidly improved in recent years. The broadening use of

the SENIEUR protocol has provided a strong foundation

for identifying critical parameters. Attention has justifi-

ably focused on the fact that thymopoiesis is critical to

restoring T-cell function. Studies of the interactions

between thymic epithelia and thymocytes have begun

to both outline the signaling pathways critical to thy-

mopoiesis and identify the control points to reverse

age-associated involution. Treatment with IL-7, growth

hormone (GH) and keratinocyte growth factor (KGF)

have all resulted in increased thymopoiesis in animal

models of age-induced thymic involution or immune

reconstitution after marrow transplant [33,57,58]. GH

therapy also enhances bone-marrow cellularity and

multi-lineage hematopoiesis, although improvements in

follicular dendritic cells or B cells have not been assessed

[57]. Still unknown are the mechanisms that alter the

normal homeostatic balance of T-cell subpopulations in

the elderly, stimulating pro-inflammatory cytokine pro-

duction and perpetuating large oligoclonal populations of

dysfunctional cells. Restoring a youthful balance of

T-cell populations and function will depend upon studies

of these changes.
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