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Purpose of review

The aim of this article is to describe recent observations

regarding the basis for the initiation and disease evolution of

multiple sclerosis.

Recent findings

A current debate is where and what initiates the

neuroinflammatory reaction that characterizes the acute

multiple sclerosis lesion. Immune sensitization to neural

antigens could develop within the systemic compartment

consequent to exposure to cross-reacting, possibly viral

derived, peptides (molecular mimicry). Although CD4 T

cells are considered central to initiating central nervous

system inflammation, the actual extent and specificity of

tissue injury reflects the array of adaptive (CD8 T cells and

antibody) and innate (microglia/macrophages) immune

constituents present in the lesions. Neuropathologic

studies indicate that lethal changes in neural cells

(oligodendrocytes) could also be the initiating event,

reflecting as yet unidentified acquired insults (e.g.

exogenous virus or reactivated endogenous retrovirus) or

intrinsic abnormalities (‘neurodegenerative’ hypothesis).

Recurrence or persistence of the disease process can

reflect events occurring at multiple sites including

expansion of the immune repertoire in response to neural

antigens transported to regional lymph nodes (determinant

spreading), especially if immune regulatory mechanisms are

defective; alterations in blood–brain barrier properties

consequent to initial cellular transmigration; and

participation of endogenous (microglia, astrocytes) or long

lived infiltrating cells (macrophages, B cells in ectopic

germinal centers) in regulating and effecting immune

functions within the central nervous system. Accumulating

neurologic deficit reflects the balance between injury and

repair; the latter also being negatively or positively (trophic

support and clearance of tissue debris) impacted by

inflammatory processes.

Summary

Understanding the full spectrum of multiple sclerosis

presents a continuing challenge for both immunology and

neurobiology.
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Introduction
In this article we will consider emerging observations that

reflect on the entire clinical spectrum of multiple sclero-

sis (MS), from its typical relapsing remitting initial course

onset to its evolution into a progressive disorder. These

observations provide new insights into the disease patho-

genesis but also raise new questions and challenges.

Basis of disease initiation
The pathologic lesions that best correlate with acute

clinical exacerbation of disease, feature foci of inflamma-

tion associated with active myelin degradation and

phagocytosis. An ongoing issue is whether this neuro-

inflammatory reaction is initiated within the immune

system or in response to primary events impacting on

the neural cells.

Immune initiated disease hypothesis

This long favored hypothesis in MS implicates that auto-

reactive T cells generated in the systemic compartment

access the central nervous system (CNS) where they

persist and induce an inflammatory cascade that results

in the injury of previously normal neural tissues. The

animal model for this sequence is experimental autoim-

mune encephalomyelitis (EAE) which is initiated by sys-

temic immunization with neural auto-antigens or by

transfer of neural antigen sensitized T cells. The various

EAE models show marked heterogeneity with regard to

topography of lesions and extent of demyelination/axonal

disruption, indicating the need to define mechanisms

linking neuroinflammation and actual tissue injury [1].

Initial studies regarding the frequency and properties of

disease relevant immune constituents focused on CD4þ

T cells, the cell type most used to adoptively transfer

EAE. The apparent increased frequency of CD4þ
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myelin reactive cells in the peripheral blood of MS

patients compared with healthy donors seems to be

derived from the memory T cell implicating prior sensi-

tization with disease relevant antigens [2]. Affinity based

studies suggest that the most relevant peptide regions

may be different than those previously emphasized [3�],

although our studies of MS patients immunized with an

altered peptide ligand for MBP 83–99 show that such

patients can generate a prolonged immune response

(>3–4 years) to this peptide [4]. Peptide library based

studies [5] indicate that myelin reactivity in many cases

actually reflects cross reactivity with exogenous peptides,

supporting the concept that initial immune sensitization

in MS results from exposure to exogenous agents: a

phenomenon known as molecular mimicry.

CD8 T cells in the blood, cerebrospinal fluid (CSF) and

in the lesions have an even more restricted heterogeneity

of T cell receptors than do CD4 T cells, consistent with

their participation in an antigen restricted response [6�,7].

Antigen restricted target recognition by CD8 and CD4

T cells would be major histocompatibility (MHC)

restricted. MHC class I, but not class II expression by

neural cells seems to be a common occurrence under

inflammatory or stress conditions [8], implicating CD8

T cells in the injury process [9]. Note that activated

T cells, as found in MS lesions, can acquire non-MHC

restricted cytotoxic capability mediated against neurons/

axons and myelinating cells [10�,11,12].

Myelin directed antibodies can contribute to the extent

of tissue injury (demyelination) in experimental models

ofMS, but to date not initiate such disorders [13]. Disease

relevant antibodies are present in lesions in at least some

MS sub-types. Myelin specific antibodies can also be

identified in the blood and CSF, although consensus is

lacking regarding actual frequency or contribution to

disease course or phenotype [14,15�]. Phenotypic and

molecular studies of B cells recovered from the CSF early

in the course of MS indicate that these cells are clonally

expanded and antigen reactive, although the precise

antigens remain to be defined [16,17�]. Antibody bound

specifically (via Fab region) to neural cells could interact

via their Fc portions with Fc receptor bearing cells

(microglia/macrophages), thus directing the potential

injury mediators produced by the latter toward a specific

target.

Neural initiated disease hypothesis

This hypothesis implicates that events within the CNS

initiate the MS disease process. A frequent speculation is

that an acquired acute or persistent infection of neural

cells could result in release of tissue antigens that in turn

would provoke a disease relevant autoimmune response.

The chronic inflammatory demyelinating disease

induced by Theiler murine encephalomyelitis virus

provides an example of such a disease development

sequence. A role of direct infection-mediated cytotoxic

neural injury would seem less likely given the apparent

positive rather than negative effects of intense immuno-

suppression on lesion formation in MS. Other mechan-

isms whereby acquired infections could impact on MS

include molecular mimicry responses, perturbing sys-

temic immune regulatory properties, as might occur with

Epstein–Barr virus infection of B cells [18] or MS retro-

virus [19,20], and modulating immune related properties

of glial cells via toll like receptor signaling [21]. Expres-

sion of persistent virus within the CNS could reflect a

response to inflammation, an issue raised with regard to

detection of human herpes virus-6 and human endogen-

ous retroviruses (HERVs) in MS tissues [22,23�].

Increased expression of HERVs in astrocytes can result

in release of mediators cytotoxic to oligodendrocytes

[23�].

Barnett and Prineas [24�] observed that changes in oli-

godendrocytes (caspase independent apoptosis) can be

the initial events in formation of an acute MS lesion,

serving to recruit an initial innate (microglia) and subse-

quently adaptive (T cell) immune response. The basis for

the oligodendrocyte apoptosis is not defined but could

reflect a primary cell injury, consistent with the previous

discussion regarding CNS virus infection or other insults

including trauma, or ischemia. In response to this report,

Trapp [25] questioned ‘whether the inflammatory

demyelination is central to the pathogenesis of MS or

is part of a cascade of adaptive immune responses that

evolved as a critical component of tissue repair’. Thera-

pies which deplete all circulating T cells in MS patients,

such as intense immunosuppression requiring stem cell

rescue or lympholytic anti-T cell monoclonal antibody

(Campath-1) are associated with complete elimination of

new inflammatory lesion formation [26�,27]. Inherited

disorders resulting in myelin disruption, particularly

adrenoleukodystrophy, can feature a robust inflammatory

response but to date there is little evidence that the

disease course is altered by immunomodulatory therapy

[28].

Basis of disease recurrence and progression
Recurrent or persistent disease could reflect events that

occur in the systemic immune system, at the blood–brain

barrier (BBB), and in the CNS. Polymorphisms in an array

of genes (MHC class II, NOS2A, CCR5d, CTL-A4, APOE-
e4) that impact on these parameters and that influence

development and course of MS continue to be identified

[29–32].

Systemic immune related events

Serial studies of peripheral blood T cells indicate that

there is an expansion of the repertoire of antigens recog-

nized over time (epitope and determinant spreading
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[33]). In the intense immunosuppression/stem cell res-

cue cohort there is recovery over time of an even

broader myelin reactive T cell repertoire raising the

questions of whether and where memory cells persist or

of where new antigen is being presented [26�]. A

number of factors could contribute to ongoing systemic

immune reactivity. Neuroantigens can be transported

from the CNS to cervical lymph nodes [34�] via lym-

phatics that originate in the region of the olfactory bulb

and reach peripheral lymphatic structures through the

cribriform plate of the nasal bone. Activated T cells

may have reduced requirements for co-stimulatory sig-

nals to respond to antigen presentation, and may serve

as their own antigen presenting cells [35�]. Circulating

B cells in MS contain an increased proportion of acti-

vated memory cells that can serve antigen presentation

functions and skew the T cell responses towards a

specific cytokine profile [36�]. An inborn or acquired

functional deficit in regulatory cells, CD25þCD4þ cells

[37�] and NKCD95 cells [38,39], could further contri-

bute to disease recurrence.

Blood–brain barrier related events

The properties of the BBB that actively regulate recruit-

ment of leukocytes to the CNS (adhesion, chemoattrac-

tion) are themselves modulated during the process of

neuroinflammation [40]. Leukocyte migration across

BBB endothelial cells involves both paracellular (at inter-

cellular contact points) and transcellular migration [41].

Carman et al. demonstrated that upon contact with leu-

kocytes, endothelial cells reorganize their membranes,

creating ‘cuplike’ microdomains enriched with ICAM-1

and VCAM-1 microvilli projections that surround the

transmigrating leukocytes and allow the transendothelial

passage of an intact leukocyte to the abluminal side of the

endothelial cell, without damaging the barrier [42].

ICAM-1 signals via the Rho pathway to regulate the

endothelial actin cytoskeleton and possibly the formation

of microvilli structures that favors transcellular passage of

leukocytes. We believe that anti-VLA-4 therapy (natali-

zumab) [43] primarily impacts on the movement of

immune cells within the extracellular matrix (basal

lamina) surrounding the BBB-endothelial cells rather

than on migration of leukocytes across endothelial cells

per se. This matrix is composed of collagen, fibronectin,

entactin and laminin 8 and 10, each of which is known to

be a potent ligand for integrins, such as VLA-4 (a4

integrin).

IFNb and glatiramer acetate therapies also impact on

BBB trafficking. In our in-vitro migration assay, IFNb

reduces the migration of monocytes [44] and of Th1 but

not Th2 lymphocytes [45] through human brain endothe-

lial cells. IFNb also stabilizes BBB permeability and

decreases the passage of soluble molecules across bovine

brain endothelial cells [46]. Glatiramer acetate induces a

significant increase in the migration of Th2 cells across

human brain endothelial cells [45].

Central nervous system related events

Within the CNS parenchyma, microglia can serve as anti-

gen presenting cells, a function dependent on their state of

activation. Activation of microglia/macrophages, themajor

CNS phagocytes, is also an important determinant of their

capacity to remove damaged tissues, a prerequisite for

optimal tissue repair [47]. Activation is upregulated or

downregulated by ‘danger’ (infection/immune related)

or ‘stranger’ (tissue injury) signals derived from their

environment [48]. Ingestion of apoptotic T cells down-

regulates activity, representing a potential means to ter-

minate the initial inflammatory response [49]. T cell

signaling of microglia/macrophage mediated via specific

cell surface molecule interactions (CD40:CD154) and

proinflammatory cytokines results inupregulationofmole-

cules involved in chemoattraction and antigen presenta-

tion. Ingestion of myelin debris, especially if opsonized

with immunoglobulin, activates microglia [50]. Stressed or

injured neurons release an array of cyclic nucleotides that

can interact with purinergic receptors expressed on micro-

glia, resulting in release of proinflammatory cytokines [51].

Although none of the currently approved therapies for

MS directly accesses the CNS, Kim et al. [52�] showed
that T cells polarized toward the Th2 cytokine, as can be

achieved with glatiramer acetate, can impact on antigen

presenting cells in the systemic compartment (mono-

cytes) or CNS (microglia) so that naı̈ve T cells to which

they present antigen will be biased towards a Th2 phe-

notype. Minocycline (now in clinical trials for MS) [53]

was shown to downregulate microglia activity in both

neuroinflammatory and neurodegenerative disease mod-

els [54]. Other cells identified within the inflamed CNS

and that can contribute to antigen presentation include

dendritic cells and blood-borne monocytes that could

have the capacity to convert into dendritic cell-like cells

when migrating into the CNS [44,55,56].

A hallmark of MS is the persistence of intrathecal immu-

noglobulin production, the majority of which does not

seem to be neural specific. Ectopic lymphoid follicle-like

structures with active germinal centers, now a recognized

feature of the meninges in secondary progressive MS,

provide a potential source of ongoing B cell responses

that need not be disease antigen specific [57�,58�]. One

speculates whether these meningeal structures underlie

some of the recently observed pathology in superficial

gray matter regions [59]. Specific antibodies may be

generated subsequent to tissue injury as for example

antineurofilament antibodies which presumably arise

secondary to axonal injury in secondary progressive MS

patients [60] and antibodies reactive with intracellular

molecules (ribonucleoproteins) presumably reflecting
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leakage of intracellular neuronal proteins [61]. Their role

in subsequent disease course remains to be shown.

The above observations all contribute to the changing

view regarding the CNS as being a site of immunological

privilege. Following an initial immune reaction within

the brain, a cascade of immunological phenomena can be

triggered that favor the perpetuation of antigen specific

reactivity and the formation of follicle-like structures

within the CNS, leading to the chronic breach of this

immune privilege. Conversely, active mechanisms can

suppress such responses; they may also be subject to

therapeutic modulation.

The basis of the continued tissue injury and loss over

time in MS continue to be defined. The lesions asso-

ciated with the late progressive phases of MS seem more

dominated by microglia/macrophage response than by

lymphocytic infiltrates. We postulate that the accumulat-

ing tissue loss could reflect the impact of multiple recur-

rent insults with initially injured cells being more

susceptible to subsequent effector molecules (multiple

hit hypothesis). We found that human oligodendrocyte

overexpressing p53 in vitro, as occurs in response to an

array of insults and as seen in situ in MS tissues, makes

themmore susceptible to TRAIL and fas mediated injury

[62]. Chronic demyelination itself impacts on axonal

survival as a result of redistribution of sodium channels

that permit calcium influx [63�,64�].

Progression of disease due to failure of repair/

regeneration

Initial recovery from injury in MS may reflect at least in

part progenitor cell dependent regenerative processes.

Such cells may themselves be affected by the disease

process. Selectivity of progenitor cell injury has been

linked with their expression of maturation related surface

molecules or receptors that determine their functional

responses to specific antibodies [65,66], potential injury

mediating molecules (glutamate) present in MS lesions

[67,68], and trophic factors such as a low affinity p75

receptor for proNGF [69–71].

Conclusion
Our opinion is that a T cell guided immune response,

whether induced by systemic molecular mimicry

responses or antigen release from events within the

CNS, remains a central event in the initiation of the

acute MS lesions, consistent with observations that ther-

apeutically targeting these cells or their access to the

CNS favorably impacts on the disease course. The endo-

genous or infiltrating innate immune constituents play a

central role in determining whether immune responses

will persist or recur in the CNS.The functional properties

of these cells are themselves subject to regulation by

signals derived from the immune mediators and neural

cells impacted by the disease process. Persistence of

activated innate immune system cells in cooperation with

long-lived adaptive immune system cells (antibody pro-

ducing plasma cells) could result in chronic neural injury

with or without recurrent T cell infiltration. This would

be consistent with observations regarding failure of sys-

temic immunotherapies to impact on the progressive

phases of MS. The precise patterns of tissue injury seen

amongst cases and over time would reflect the combina-

tion of effectors present.
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