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ABSTRACT
Conjugated linoleic acid (CLA) and the long-chain polyunsaturated
n�3 fatty acids have been shown in vivo and in vitro to reduce tumor
growth. Tumor growth could occur by slowing or stopping cell
replication (by interfering with transition through the cell cycle),
increasing cell death (via necrosis and/or apoptosis), or both. The
anticancer effects of fatty acids, shown in vivo, could also be medi-
ated by effects on the host’s immune system. Although it is widely
recognized that n�3 fatty acids can alter immune and inflammatory
responses, considerably less is known about CLA. For n�3 fatty
acids, several candidate mechanisms have been proposed for their
immune effects, including changes in 1) membrane structure and
composition, 2) membrane-mediated functions and signals (eg, pro-
teins, eicosanoids), 3) gene expression, and 4) immune develop-
ment. Considerable work has been done that shows the potential
importance of CLA as an anticancer treatment; however, many ques-
tions remain as to how this effect occurs. This review summarizes the
CLA and cancer literature and then uses the evidence for the anti-
cancer immune and tumor properties of the long-chain n�3 fatty
acids docosahexaenoic and eicosapentaenoic acids to suggest
future research directions for mechanistic studies on CLA and
cancer. Am J Clin Nutr 2004;79:1190S– 8S.
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INTRODUCTION

Fats are adversely implicated in the etiology of many cancers,
yet evidence is accumulating that certain fatty acids, such as the
highly polyunsaturated n�3 fish oil fatty acids, docosahexaenoic
acid (DHA) and eicosapentaenoic acid (EPA), have potential
anticancer activity [reviewed by Bartsch et al (1), Rose and
Connolly (2), and Hardman (3)]. More recently, anticancer ac-
tivity was demonstrated for conjugated linoleic acid (CLA) in
both human tumor cell lines and in well-accepted rodent models
of carcinogenesis (4–10). Human epidemiologic data support the
anticancer potential of n�3 fatty acids as an inverse association
between dietary n�3 intake (and the intake of fish) and the
incidence of several forms of cancer, including breast and colo-
rectal cancers [reviewed by de Deckere (11)]. Although an in-
verse relation was observed between CLA accumulation in
breast tissue and the incidence of breast cancer in postmeno-
pausal women (12), estimated CLA intake was reported to dem-
onstrate a positive (albeit weak) relation with breast cancer

incidence in the Netherlands Cohort Study (13). Thus, there is
insufficient evidence from epidemiologic studies in humans, at
this time, to support the anticarcinogenic properties of CLA
demonstrated in animal and tissue culture studies.

The biochemical mechanisms whereby dietary CLA and n�3
fatty acids inhibit carcinogenesis are not established. Fatty acids
could influence tumor growth by way of a direct effect on the
tumor or by way of their effects on immunosurveillance in the
host. This report uses the literature about n�3 fatty acid to ex-
plore mechanisms by which CLA might influence tumor growth
and immune function.

EFFECTS OF FATTY ACIDS ON TUMORIGENESIS

It is well established that feeding DHA and EPA (from 5% to
20% wt:wt, as fish oil) reduces the growth of tumors in rodents,
including tumors of the mammary gland (2, 14), colon (2), pros-
tate (15), liver (16) and pancreas (17). Work in human cancer cell
lines has convincingly demonstrated that both the long-chain
polyunsaturated n�3 fatty acids DHA and/or EPA can reduce the
growth of many different human tumor types, including breast
(18), colon (19), pancreatic (20), chronic myelogenous leukemic
(21), and melanoma (22) cell lines.

Considerable evidence demonstrates that dietary CLA inhibits
the initiation, after initiation, or promotion stages of carcinogen-
esis, as well as some evidence that it can influence cancer pro-
gression [reviewed by Belury (23)]. Feeding a synthetic mixture
of CLA isomers (45% c9,t11-CLA, 42% t10,c12-CLA, with
several other remaining isomers comprising minor amounts) at
0.5–1.5% (wt:wt) in nutritionally complete semipurified diets
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either during or after chemical carcinogen treatment inhibited
tumorigenesis in the mammary gland, colon, skin, and prostate
(5–7, 24, 25). Although there is considerable evidence of the
antitumor growth effects of CLA on tumor cell lines and rodent
models, CLA was not demonstrated to inhibit tumor growth in all
animal models. Feeding CLA did not impede the development of
aberrant crypt foci after azoxymethane treatment (26), the oc-
currence of liver metastasis in ductal pancreatic cancer in rodents
(27), tumorigenesis in the ApcMin mouse (28), or the growth of an
aggressive mammary (29) or prostatic (30) tumor. Recently, it
was reported that the t10,c12-CLA might even act as a cancer
promoter in colon carcinogenesis in the Min mouse, possibly
through pathways affecting nuclear factor-êB and cyclin D1
(31). Both the c9,t11- and the t10,c12-CLA isomers and mixtures
of these isomers were demonstrated to reduce the proliferation of
many tumor cell lines in culture (32, 33), and adding either of the
major isomers of CLA to the diet results in a similar inhibition of
mammary tumorigenesis (34, 35). In vivo CLA was also dem-
onstrated to inhibit the growth of transplanted prostatic (10) and
mammary (9) tumor cell lines. Feeding CLA (1.0 g/100 g diet)
reduced the proliferation of terminal-end bud and lobuloalveolar
bud structures in the mammary gland of rats (36). These are the
sites at which tumors form in both rat and human mammary
cancers. Evidence also suggests that CLA could influence the
progression (metastasis) of mammary rodent tumors (5, 37).

Fatty acids and their effect on tumor cell growth

As illustrated in Figure 1, fatty acids could alter the growth of
tumor cells by 1) influencing cell replication by interfering with
components of the cell cycle or 2) increasing cell death, either by
way of necrosis or apoptosis.

Effects on cell replication

Cellular replication is composed of several distinct phases
(Figure 1): G1 is an initial growth phase that leads to DNA
synthesis (S phase), followed by a gap phase (G2), and finally by
mitosis (M phase), the actual segregation of chromosomes and
cytoplasms (38). Two important families of regulatory mole-
cules promote progression through the cell cycle, the cyclins and
the cyclin-dependent kinases (cdks) (38). Normal cells progress
through the cell cycle after stimulation of these regulatory mol-
ecules by exogenous agents such as growth factors, hormones, or
cytokines (38). Cancerous cells, however, appear to lose their
dependency on these external signals and often progress, unreg-
ulated, through many cell cycles (39). Multiple specific muta-
tions in the genes encoding proteins that normally play a role in
regulating the progression of cells through the cell cycle are
identified in tumor cells (40).

Some evidence exists that n�3 fatty acids have an effect on
tumor cell progression through the cell cycle, but the evidence in
vivo is still preliminary. In vitro DHA treatment arrested pro-
gression through the cell cycle in human-derived MCF-7 breast
cancer (41) and malignant melanoma (22) cell lines. Similarly,
EPA treatment in vitro is reported to arrest the growth of K-562
human leukemic (21), pancreatic (42), and colon (19) cancer cell
lines in different phases of the cell cycle, correlating with a
downregulation of cyclin protein expression in some instances
(21). In vivo, fish oil fed to rats implanted with a mammary tumor
cell line prolonged the DNA replication time of the tumor cells,
supporting the hypothesis that n�3 fatty acids could slow down
progression through S phase (43).

Considerable in vitro work suggests that incubating tumor
cells with CLA alters the expression of key proteins that regulate
the cell cycle [reviewed by Belury (23)]. An in vitro study sug-
gests c9,t11-CLA affects cyclins, cdk inhibitors, and check point
proteins (44). Work by Ip et al (45) demonstrated that feeding
CLA or c9,t11-CLA–rich butter fat for 4 wk reduces the expres-
sion of cyclins D and A in the terminal-end buds and alveolar
clusters of the mammary epithelium. Cyclins D and A are key
proteins involved in facilitating entry of the cells into the cell
cycle and progression through S phase, respectively (46). CLA
feeding was also shown to up-regulate the expression of p53
[reviewed by Belury (23)], the protein product of a tumor sup-
pressor gene that is frequently mutated in many tumor cells (47).
p53 Is involved in monitoring the quality of DNA after G1 phase
and, if DNA is damaged, will block entry of the cell into S phase
(Figure 1) by altering the expression of genes involved in growth
arrest and promotion (38). p53 Can also induce genes belonging
to a family of regulatory molecules known as cdk inhibitors (46).
In the study by Ip et al (45), there was a trend toward an increase,
although not statistically significant, in the proportion of cells
from the CLA-fed rats that expressed the p16 and p27 cdk in-
hibitors. Together, these data suggest that CLA could reduce
tumor cell proliferation by modifying cell cycle proteins that
regulate this process.

Effects on cell death

Cell death can occur by way of necrosis or apoptosis. Necrosis
generally results from an insult or toxicity reaction and triggers
inflammation, whereas apoptosis describes the distinct energy-
requiring process of programmed cell death, characterized by DNA
fragmentation, chromosome condensation, nuclear membrane

FIGURE 1. Potential ways in which fatty acids could influence tumor cell
growth. Fatty acids could interfere with cell replication by altering the dis-
tribution of tumor cells in the cell cycle, by affecting the expression of cell
cycle regulatory proteins, or both. Alternatively, fatty acids could increase
cell death via necrosis or apoptosis.
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fragmentation, formation of apoptotic bodies, and inversion of
phosphatidylserine in the plasma membrane.

Necrosis. It was reported that many tumor cells do not possess
sufficient antioxidant defense systems when compared with
healthy cells, and so they are more susceptible to oxidative and
peroxidative damage (48). Polyunsaturated fatty acids (PUFAs)
are the main intracellular substrates for lipid peroxidation; thus,
PUFA-derived reactive lipid compounds could damage cell
membranes, change the cellular composition or cytoskeletal as-
sembly, modify membrane transport systems or enzymes, or
inhibit polymerase reactions and/or polyamine synthesis (49).
Therefore, it is reasonable to expect that PUFA-enriched tumor
cells might have an increased susceptibility to oxidant stress.
There is evidence for an oxidative effect of n�3 fatty acids from
both in vitro (20, 50, 51) and in vivo studies (49, 52). However,
it is not entirely clear that lipid peroxidation is cytotoxic to cells
(51), and, recently, the specificity of this effect in the in vitro
work was questioned (53). Studies in our own laboratory dem-
onstrated that the addition of an antioxidant (vitamin E) to the
culture media does not abrogate the growth-inhibitory effects of
n�3 fatty acids on breast cancer cell growth (unpublished data,
2004), suggesting that the growth inhibition observed with n�3
fatty acids cannot be attributed to lack of oxidative defense.

Early studies suggested that an oxidative mechanism was in-
volved in the growth-suppressive effects of CLA. Supplementa-
tion of cell culture medium with mixed isomer CLA (17–71.5
�mol/L) was reported to increase the susceptibility of tumor cells
to lipid peroxidation (54–56). Despite this early interest in oxi-
dative stress on tumor growth, subsequent studies suggested that
CLA does not act directly as a pro-oxidant (57). However, CLA
enrichment in membranes can result in the production of conju-
gated diene hydroperoxides (58). These compounds could result
in cytotoxic effects or could simply contribute to generating an
internal cellular pro-oxidant milieu that influences growth-
regulatory signals (59). This indirect oxidative function is sup-
ported in vivo in which feeding CLA to healthy subjects was
reported to induce both nonenzymatic and enzymatic lipid per-
oxidation (60). Contrary to the tumor peroxidation hypothesis,
CLA enrichment in nontumor tissues was reported to increase
these tissues’ oxidative stability (54). This stability is suggested
to be due to the decrease in linoleic acid metabolites (particularly
arachidonic acid) when CLA concentrations are increased in
tissues (61). It was suggested that the different isomers could
have different oxidative properties (in healthy tissues), and the
proportion of c9,t11-CLA to other CLA isomers, in particular
t10,c12-CLA, could alter the balance between anti- and pro-
oxidant susceptibility (54).

Apoptosis. In vivo, feeding DHA, EPA, or a mixture was
demonstrated to increase the rate of apoptosis of tumor cells in
rodent models, including tumors of the mammary gland (62, 63),
liver (16), and colon (64, 65). Similarly, adding EPA or DHA to
culture media was demonstrated to induce apoptosis in breast
(66), colon (19, 64, 67, 68), lymphoma (69), leukemic (70, 71),
pancreatic (20, 42), and melanoma (22) human cancer cell lines.
The mechanism of induction of apoptosis by n�3 fatty acids is
unknown but was suggested to involve n�3–mediated changes
in membrane fluidity or structure; products of PUFA metabolism
such as lipid peroxides, aldehydes, prostaglandins, or leukotri-
enes; or synthesis of reactive oxygen species (20).

Similarly, feeding CLA was reported to induce apoptosis in
mammary (72), colon (73), and adipose (74) tissues. Providing

CLA in vitro induced apoptosis in breast (75), SGC-7901 (46),
and HT-29 (76) tumor cells. Although most studies used a mix-
ture of isomers, the effects of CLA on breast or forestomach
tumors were shown for the c9,t11-CLA (44, 75, 77) and t10,c12-
CLA (75, 77) isomers. Recently, it was suggested that a 50:50
mixture of the 2 main CLA isomers was more effective than
individual isomers at inducing apoptosis in breast cancer cell
lines (75). As with n�3 fatty acids, the mechanism for the effects
of CLA on apoptosis is not established. Data suggest that CLA
could down-regulate ErbB3 signaling and the phosphoinositide
3-kinase and Akt pathway (76) and that it can decrease expres-
sion of bcl-2, a gene involved in suppression of apoptosis (72).
Recently, feeding CLA (as the 2 major isomers or as a mixture)
was demonstrated to inhibit the expression of extracellular-
regulated kinase 1 protein and to promote the expression of
mitogen-activated protein kinase phosphatase-1 protein in a ro-
dent model of forestomach neoplasia (77). Only a small effect of
CLA was reported on induction of the apoptosis-promoting Bax
protein (23). Recently, it was reported that the apoptosis induced
by c9,t11-CLA in SGC-7901 cells could be due to the ability of
this isomer to block progression through the cell cycle (44).
Considerable data support that CLA can increase peroxisome-
proliferator activated receptor-� (PPAR�) expression in tissues
[reviewed by Belury (78)], and PPAR� is reported to promote
apoptosis in many tumor cell lines (79).

Fatty acids and their effect on the immune system

Immune surveillance, the ability to detect and destroy tumor
cells, is an important role of the cellular arm of the immune
system (80). T helper (CD4�) and cytotoxic T lymphocytes
(CD8�) play a central role in tumor surveillance (80). There is a
progressive decrease in many immune surveillance defenses in
animal models of cancer (81) and humans with cancer (82). The
influence of various fatty acids, most extensively n�3 PUFAs,
on the functional responses of cells of the immune system was
examined in vitro, in animal feeding studies, and in human in-
tervention studies.

n�3 Fatty acids and immune function

Although it is well established that long-chain n�3 PUFAs
can up-regulate anticancer defenses such as natural killer cell
cytotoxicity and humoral and T cell responses [reviewed by
Yaqoob (83)], the application of studies in healthy humans and
animals to cancer may not be as straightforward. For example,
our research has demonstrated that the influence of dietary n�3
PUFAs on the immune response differs between healthy animals
and animals with suppressed immune systems (14, 84). Addi-
tionally, the amount and the mixture of fatty acids in the diet,
particularly the content of n�6 fatty acids, influences the im-
mune effect that results after feeding n�3 fatty acids. Tumor-
bearing rats fed long-chain n�3 PUFAs as part of a low-PUFA
diet had significantly increased natural killer cell cytotoxicity, a
higher proportion of CD8� and CD28� cells that were activated
(ie, expressing CD25) and increased nitric oxide and interleukin
2 (IL-2) production after mitogen stimulation, whereas these
immune enhancements were not found when n�3 PUFA was
supplemented in a high-PUFA diet (84).

Conjugated linoleic acid isomers and immune function

Several studies reported immunologic effects of mixtures of
CLA isomers in poultry, rodents, guinea pigs, and pigs [reviewed
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by Sebedio (85)]. Although not directly related to anticancer
defense, there are reports of beneficial effects of feeding CLA to
animals and rodents on inflammatory-induced growth suppres-
sion (86), endotoxin-induced anorexia (87), mucosal damage
and growth failure in experimental colitis (88), and antigen-
induced type 1 hypersensitivity response (89, 90). However,
feeding mixtures of CLA did not affect the resistance of mice to
infection with Listeria monocytogenes (91). The effects on var-
ious immune characteristics from feeding and in vitro experi-
ments are presented in Table 1.

Although it is not always possible to translate in vitro measures
specifically to in vivo function against a tumor, all of the findings
reported in Table 1 would generally be regarded as beneficial to
cancer prevention. Interestingly, in the one study, the effects of
CLA on cellular immunity were found to remain for some time
beyond the period of dietary supplementation (96). To our
knowledge no studies examined the effect of feeding CLA on
immune function in the presence of a tumor. As evident in Table
1, few studies were conducted with use of single isomers. How-
ever, the results of a recently published randomized double-
blinded clinical trial suggest that, unlike most of the tumor stud-
ies, the individual isomers could act differently on components of
the immune system. In that study, providing 1.6 g/d CLA for 12
wk, a 50:50 mixture of CLA, but not an 80:20 (c9,t11:t10,c12-
CLA) mixture improved the proportion of individuals producing
a protective antibody titer to hepatitis B vaccination. Interest-
ingly, in those healthy subjects, other aspects of immune function
(delayed-type hypersensitivity responses, natural killer cell ac-
tivity, lymphocyte proliferation, and production of tumor necro-
sis factor �, IL-1â, IL-6, interferon-ã, IL-2, IL-4, and prostaglan-
din E2) were not affected (100). These results are consistent with
an earlier report (101).

MECHANISMS TO EXPLAIN THE EFFECTS OF FATTY
ACIDS ON IMMUNE AND TUMOR CELLS

Although it is widely recognized that dietary fatty acids can
potentially alter immune and inflammatory responses and tumor-
igenesis, current understanding of the cellular mechanisms is
incomplete. Several candidate mechanisms are proposed, includ-
ing alterations in membrane structure and composition, changes
in membrane-mediated functions and signals (eg, proteins, eico-
sanoids), changes in gene expression, and effects on the devel-
opment of the immune system. As the evidence for the potential
mechanisms for n�3 fatty acids on tumor growth and immune
function is the subject of several excellent recent reviews (83,
102–104), this section uses that information to explore the evi-
dence for CLA.

Changes in membrane composition

Immune cell activation [cell proliferation, phagocytosis
(105)] and tumor growth [malignancy (106)] result in an in-
creased rate of novo synthesis and turnover of membrane phos-
pholipids. These processes require a constant supply of fatty
acids, the main supply being those consumed in the diet. It is well
established that both the amount and type of fat consumed in the
diet influence the lipid composition of immune (107, 108) and
tumor (16, 109–111) cell membranes. Changes in membrane
composition would affect growth, interaction with other cells
(immune system), and the function of proteins and other com-
ponents that are in the membrane. The function of the immune
system depends on interactions between different cell types and
through effects on membrane composition; dietary fatty acids
have the potential to influence these interactions (83). Consid-
erable evidence supports this mechanism for n�3 fatty acids
[reviewed by Yaqoob (83)]. Although little work demonstrates
the incorporation of CLA isomers into immune cell membranes,

TABLE 1
Effect of conjugated linoleic acid (CLA) on immune defenses of importance in immune surveillance1

Immune defense Reference

T-cell function
Improved blastogenesis response to mitogens Mixtures of isomers: Wong et al (29); t10,c12-CLA reviewed in Pariza et

al (92)
Increased IL-2 production in response to mitogens Mixtures of isomers: Wong et al (29), Hayek et al (93)
Increased production of other cytokines in response to mitogens c9,t11-CLA: Kelley et al (94), Yamasaki et al (95); t10,c12-CLA: Kelley et

al (94)
Increased delayed-type hypersensitivity response Mixtures of isomers: Whigham et al (89), Miller et al (87), Wong et al (29)
Improved cytotoxic T-cell function: increased ability of CD8��

lymphocytes to proliferate and release granzyme with stimulation
Mixture of isomers: Bassaganya-Riera et al (96)

No effect on lymphocytes cytotoxicity Mixture of isomers: Wong et al (29)
Increased proportion of CD8� Mixture of isomers: Bassaganya-Riera et al (96, 97); c9,t11-CLA:

Yamasaki et al (95)
Humoral function

Increase in IgA production Mixed isomers: Yamasaki et al (95, 98); t10,c12-CLA: Yamasaki et al (95)
Increased IgA production after stimulation t10,c12-CLA: Yamasaki et al (95)

Macrophage function
Reduce the production of inflammatory mediators (including eicosanoid

synthesis and production)
Mixtures of isomers: Sebedio et al (85), Cook et al (86), Miller et al (87)

Reduced inflammatory cytokine production after stimulation (TNF-�,
IL-1, IL-6, nitric oxide)

Mixed isomers: Yu et al (99), Yang et al (25); c9, t11-CLA: Yang et al (25)

Reduced nitric oxide production after stimulation Mixed isomers: Yang et al (25)

1 IL, interleukin; TNF-�, tumor necrosis factor-�.
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it can likely be assumed, as it is well established, that feeding
CLA isomers is associated with accumulation of CLA and its
metabolites in many other tissues and cell types (61, 112). Our
work (33) and that of others (59) demonstrated that CLA is
rapidly incorporated into the functionally important tumor cell
membrane lipids (phospholipids). Our results suggest that CLA
isomers (both major isomers) are specifically replacing the es-
sential fatty acids arachidonic and linoleic acids in phospholipids
(33). Data exist to suggest that the different isomers might be
incorporated at different rates (4, 5, 33).

Lipid rafts are dynamic microenvironments in the exoplasmic
leaflets of the phospholipid bilayer of plasma membranes, which
are thought to preferentially group transmembrane proteins ac-
cording to their function (113). Several proteins involved in
signaling are commonly found in lipid rafts, and many of these
proteins are palmitoylated (114). Activation of the proteins
within rafts by an extracellular ligand can result in rapid cluster-
ing, which appears to be important for signal transduction. A
couple of studies examine n�3 fatty acid incorporation into lipid
rafts (115, 116), offering a logical yet unexplored link between
changes in the CLA content of cell membranes and changes in
cellular function.

Changes in membrane-mediated signals (signal
transduction) and proteins

Changes in plasma membrane structural characteristics in
mammalian cells can change the activity of proteins that serve as
ion channels (117), transporters (117), receptors (118), signal
transducers (119), or enzymes (120). Dietary lipids were dem-
onstrated to influence the pattern of fatty acids released from
lymphocytes (ie, arachidonic acid) (121), which would ulti-
mately influence the synthesis of eicosanoids (prostaglandins,
leukotrienes, thromboxanes). In addition to their role in regula-
tion of immune and inflammatory responses (83), eicosanoids

may also be needed to sustain growth of tumor cells (122).
Long-chain n�3 fatty acids were shown in immune cells to

alter cell surface costimulatory and activation markers or mole-
cules (123, 124), calcium signaling (125), and protein kinase C
translocation in the membrane (126). Similarly, in other cell
types, membrane incorporation of n�3 fatty acids can alter mem-
brane permeability (127), membrane fluidity (128, 129), and
hormone and growth factor binding (130).

Compared with the amount of work in tumor cells, less work
was done on the membrane-mediated effects of CLA on immune
cells. In tumors, studies showed that incubation with CLA iso-
mers (either c9,t11- and t10,c12-CLA or a mixture) altered lipid
(57) and phospholipid metabolism (78), changed the amount of
the membrane protein stearoyl-CoA desaturase (131) and re-
duced arachidonic acid release from phospholipids (33, 73, 132)
in several different tumors or cell lines. Evidence suggests that
CLA could also inhibit both the constitutive cyclooxygenase-1
and the inducible form of this enzyme, cyclooxygenase-2 (99,
133). These in vitro studies indirectly suggest that the mechanism
by which CLA inhibits tumor growth could involve the modu-
lation of arachidonate-derived eicosanoids (prostaglandin E2,
prostaglandin F2, leukotriene B4, and leukotriene C4). Support
for CLA-altering eicosanoid synthesis comes from work in bone
and macrophages (134). Although it was suggested in the liter-
ature, it is unlikely that conjugated-eicosatetraenoate (20:4;
c5,c8,c11,t13) can act as a substrate for cyclooxygenase (78).
The studies that found that phospholipid-associated arachidonate
concentrations were not altered after feeding CLA (28, 135) open
the door for other possible mechanisms.

Effect of fatty acids on gene expression

n�3 Polyunsaturated fatty acids

Considerable evidence indicates that n�3 PUFAs are capable
of inducing changes in gene expression in several different cell

TABLE 2
Remaining questions on the potential mechanisms for the effect of conjugated linoleic acid (CLA) on tumor metabolism and immune function1

Question Explanation/rational

Do the isomers of CLA have different physiologic
effects?

Studies tended to use CLA preparations that contained mixtures of many isomers, making it
impossible to ascertain which isomer was responsible for the observed physiologic effects.
Although both isomers appear to have anticancer properties, there is evidence that the
mechanisms could differ. There is a need to conduct animal and human studies that use highly
pure preparations of single isomers of CLA.

Does the biological form of CLA consumed
influence its activity?

CLA is available in synthetic form and in ruminant products. Although the chemical isomers
could be the same, the form in which they are consumed is different (free fatty acids esterified
or nonesterified, phospholipid, positional triacylglycerol. The effect of this form on the
digestion, absorption, and incorporation into specific lipids in tumors and immune cell lipids
has not been established.

What is the effect of an intake of CLA over a
lifetime?

Studies are needed to characterize the effect of consumption of CLA during development and
differentiation of the immune system and the tissues of common cancer sites.

What is the influence of genotype on the metabolism
and physiologic effect of consuming CLA?

It is well accepted that genotype influences the metabolism of most nutrients and the
susceptibility to cancer.

What is the impact of dietary CLA on cancer
surveillance?

Although it is well established that the immune system is responsive to changes in nutrient intake
and that it plays an important role in tumor surveillance, few studies examine the effect of
CLA on immune surveillence during cancer or in people at high risk.

What are the mechanisms by which CLA inhibits
tumor growth?

The results of many of the studies suggest that the underlying mechanism for CLA isomers may
not be that different. Further work on membrane-mediated effects (ie, lipid rafts) and PPAR-
dependent1 and-independent mechanisms are needed.

1 PPAR, peroxisome-proliferator activated receptor.
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types, including tumor and immune cells. The list of genes whose
expression appears to be affected by fish oil or purified n�3 fatty
acids continues to grow, and excellent reviews have been pub-
lished (136–138). Although the exact way in which n�3 fatty
acids alter gene transcription is not known, there is considerable
speculation and new evidence that this alteration might involve
a class of nuclear receptors called PPARs. PPARs are ligand-
activated transcription factors present in a variety of cell types,
with diverse actions, mainly in lipid metabolism (83, 139). Ac-
tivators of both PPAR� and PPAR� were shown to inhibit the
activation of several inflammatory genes [reviewed by Berger
and Moller (140)]. n�3 Fatty acids can activate PPARs by di-
rectly binding to them (141) or by binding their cyclooxygenase
and lipoxygenase metabolites (142).

Conjugated linoleic acid

Evidence supports an effect of CLA on gene expression in
tumor cells, because CLA was demonstrated to influence the
expression of genes of the cycle (described in Effects on cell
replication), thereby regulating cell growth and differentiation
(78). Recently, a mixture of CLA isomers was reported to regu-
late the expression of major oncogenes involved in cell survival
and programmed cell death signaling in human mammary cell
lines [MCF-7, MDA-MB-231, and MCF-10a cells (75)]. Isomers
of CLA have moderate affinity, compared with n�3 fatty acids,
for PPARs [reviewed by Belury (78)]. Evidence is accumulating
that activators of PPARs are protective against cancers arising in
the mammary gland, colon, and prostate (143). It was suggested
that CLA could both change the level and alter the activation of
several PPARs (78). Although there is not a great deal of exper-
imental support at the present time for CLA modulation of
PPARs on immune metabolism, data do suggest that the anti-
inflammatory effects of CLA in a macrophage cell line are me-
diated, at least in part, through changes in PPAR expression (99).

Effect of fatty acids on development of the immune
system

Adult immune defenses develop during the first few years of
life (144) and are influenced to some extent by the intake of
polyunsaturated fats (108, 144). Epidemiologic data suggest that
diet, particularly lipids, early in life influences cancer incidence
(145, 146). To our knowledge no work is aimed at determining
the effects of feeding CLA on immune development. Exciting
data suggest that feeding CLA early in life alters the development
of the mammary gland in rodents (147). Feeding CLA during
mammary gland development in rats resulted in diminished
mammary epithelial branching, possibly contributing to the re-
duction in mammary cancer risk in these rats (45). Thus, in rats,
optimal CLA nutrition during pubescence could conceivably
control the population of cancer-sensitive target sites in the mam-
mary gland.

CONCLUSIONS AND REMAINING QUESTIONS

Considerable work has been done to demonstrate the potential
importance of CLA as an anticancer treatment. There are many
clues as to how this molecule might mediate its effects on the
tumor and immune system. Many of these effects parallel our
current understanding of the anticancer effects of long-chain
polyunsaturated n�3 fatty acids. Despite the growth in research
in this area, many questions remain (Table 2). Answers to these

questions are required to provide the rationale to move CLA and
cancer research from the culture plate and animal model to hu-
man trials.
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