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Abstract

It has long been observed that patients with autoimmune diseases also have immune deficiency. How these two opposite

extremes of immunity can be found in the same individual is largely unclear. Here we review the evidence that a FoxP3 defect

may provide a critical link between autoimmunity and immune deficiency. Disruption of FoxP3 results in severe autoimmune

syndromes in both human and mice. Bone marrow chimera experiments indicate that FoxP3 defects in both hematopoietic and

non-hematopoietic cells are required for the development of severe autoimmune disease. FoxP3 mutation in the hematopoietic

cells impairs the development of regulatory T cells (Treg). Our data demonstrate that the mutation in non-hematopoietic cells

results in deficient thymopoiesis. Defective T cell production may be an underlying cause of T cell hyperproliferation, which

together with Treg defects, may lead to fatal autoimmune disease in mouse and man.
T
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NCORR1. Introduction

Autoimmunity is defined as over-reactive immune

responses against self tissues. Paradoxically, in a

number of autoimmune diseases, immune deficiency

coexists with autoimmunity [1–5]. Recent studies on

lymphopenia-induced homeostatic proliferation, which

results in a generation of memory-like cells [6–8],

suggested a mechanism to reconcile this paradox. As

demonstrated in NOD mice, a mouse model of

human type I diabetes [9,10], lymphopenia was as-
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sociated with increased proliferation of T cells, which

may be causatively related to the development of

type I diabetes.

Lymphopenia can be induced by either environmen-

tal factors such as chemotherapy [11] and irradiation

[6–8] or theoretically, by defective production or sur-

vival of T cells. Our recent studies in the Scurfy mouse

model demonstrate that the FoxP3 gene may provide a

genetic link between immune deficiency and autoim-

mune diseases.

2. FoxP3 mutation and autoimmune diseases

The Scurfy mutation occurred spontaneously at the

Oak Ridge National Laboratory in the late 1940s. Only

the male was found to be affected and the mutant male
(2005) xxx–xxx
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mice usually died within one month after birth due to

the severe autoimmune disease characterized by lym-

phadenpathy, splenomegaly, and massive lymphocyte

infiltrations in various organs [12]. Early studies on

Scurfy mice showed that mutant CD4+CD8� T cells

were sufficient to transfer the disease to a syngeneic

immune deficient host, indicating that CD4 helper T

cells are the primary cause of the deadly autoimmune

disease in the Scurfy mice [13]. Subsequent molecular

genetic studies revealed a frame shift mutation in the

8th exon of the FoxP3 gene in the Scurfy mice as the

underlying genetic cause of the disease [14]. Analogous

mutation of human FoxP3 was found to be responsible

for Immunodysregulation, polyendopathy, enteropathy,

X-linked diseases (IPEX) [15–18]. In both mouse and

human, the FoxP3 mutation is responsible for the most

aggressive autoimmune diseases that resulted in early

lethality.

The most clearly elucidated function of FoxP3 is T

cell-intrinsic. FoxP3 is found to be predominantly ex-

pressed in the CD4+CD25+ regulatory T cells (Treg),

and ectopic expression of FoxP3 in CD4+CD25� T cells

is sufficient to convert them into Treg with strong

suppressor activity [19–21]. More importantly, targeted

mutation of FoxP3 in hematopoietic cells is both nec-

essary and sufficient to ablate Treg development [21].

Thus, FoxP3 is now regarded as a master regulator for

the lineage differentiation and function of Treg.

However, several lines of evidence also suggest that

defective Treg development alone may be insufficient

to initiate such severe autoimmune diseases as those

observed in Scurfy mice and IPEX patients. First,

transgenic expression of wild type FoxP3 under the

lck promoter did not rescue the autoimmunity in Scurfy

mice, although it is unclear whether modest elevation

of the FoxP3 gene in the spleen of one founder line

can fully restore Treg function [22]. Second, irradiation

chimeras using bone marrow from Scurfy mice to

reconstitute irradiated SCID mice did not lead to the

development of autoimmune disease [23]. Because

irradiation leads to the generation of T cells from

SCID mice, we have reproduced the results using

RAG-1 and RAG-2-deficient hosts. In both cases, we

showed that complete reconstitution of T cells from the

Scurfy bone marrow did not lead to Scurfy-like dis-

ease. The B6.RAG-1/Scurfy chimera mice lived for

more than one year after reconstitution. Although the

RAG-2/Scurfy mice lived less than 20 weeks, the

pathogenesis was distinct from Scurfy mice by the

lack of characteristic lymphoproliferation. These

results demonstrate a T cell-extrinsic function of

FoxP3.
ED P
ROOF

3. Defective T cell production caused by T

cell-extrinsic mutation of FoxP3

In our analysis of the immunological basis of auto-

immune diseases associated with FoxP3 mutation, we

observed a very substantial reduction in thymic cellular-

ity. The reduction was caused by a reduction in prolifer-

ation of immature thymocytes that lack both CD4 and

CD8 co-receptors. In order to determine whether the

defective thymopoiesis was associated with T cell acti-

vation in the Scurfy mice, we crossed the FoxP3 mutant

allele into the RAG-2-deficient background. Even

though T cell development was arrested at an early

(DN3, CD25+CD44�) stage, RAG-2-deficient, FoxP3

mutant mice showed defects in early thymocyte prolif-

eration. These results demonstrate that defective thymo-

poiesis is not a secondary consequence of T cell

activation in the Scurfy mice. Interestingly, in bone

marrow chimera mice consisting of either FoxP3 WT

or FoxP3 mutant bone marrow cells, thymopoiesis was

normal. Thus, defective thymopoiesis is not due to a T

cell-intrinsic defect of FoxP3. Conversely, a mutation of

FoxP3 in the thymic stroma cells was necessary and

sufficient to cause defective thymopoiesis.

We have obtained several additional lines of evidence

to support a critical role for FoxP3 in thymopoiesis.

First, we showed that FoxP3 was expressed at high

levels in cortical thymic epithelial cells. Thus, on a per

cell basis, FACS-sorted thymic epithelial cells had

higher levels of FoxP3 mRNA than the total thymocytes.

Immunofluorescence analysis revealed expression of

FoxP3 in the cortical but not medulla thymocytes. Sec-

ond, FoxP3 repressed expression of ErbB2, which was

implicated in inhibiting thymocyte development [24].

We observed that the transfection of the thymic epithelial

cell line repressed ErbB2 expression, at least in part by

repressing its promoter activity. Conversely, we showed

that ErbB2 expression was significantly elevated in the

thymus of the Scurfy mice. Thirdly, we showed that

Herceptin, which cross-reacts with mouse ErbB2, can

partially restore proliferation of DN thymocytes.

Taken together, our data [25] demonstrate that FoxP3

mutation has a direct effect on the production of thymo-

cytes in addition to its known function in the generation

of Treg. Our data thus provide a genetic link between

immunodeficiency and autoimmune diseases (Fig. 1).

It is worth noting that an elegant study by Fontenot

and colleagues [26] has demonstrated that targeted mu-

tation of FoxP3 by CD4 promoter-driven Cre appears

necessary and sufficient to cause fatal autoimmune dis-

eases. While these data raised a serious issue as to

whether the FoxP3 defect in non-T lineage is required
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for pathogenesis, it should be pointed out that lineage

specific expression of Cre in this transgenic line has not

been fully established. In fact, we have demonstrated that

the CD4 gene is actively transcribed in the thymic epi-

thelial cells [25]. Further work is needed to reconcile our

data with those published by the Fontenot group.

The defects in thymic T cell production are also ob-

served in some other autoimmune syndromes. Thus, in the

human, DiGeorge syndrome can lead to autoimmune

diseases [1–5]; thymoma is commonly associated with

myasthenia gravis [27,28], while thymic hypoplasia is

associated with autoimmune hemolytic anemia and ju-

venile pemphigoid [29]. Defective thymopoiesis and the

export of mature T cells have also been reported in both

RA [30] and MS [31] patients. The diabetes-prone BB

rats have severe defects in thymocyte development due

to mutations of the IAN gene family members [32,33].

How does the defective thymopoiesis in the Scurfy

mice contribute to the pathogenesis of autoimmunity?

Theoretically, a reduced T cell production may cause

lymphopenia-driven proliferation of T cells in the pe-

riphery. In support of this notion, we have obtained

preliminary data which showed strong homeostatic pro-

liferation of T cells in the periphery of mice with defec-

tive FoxP3 in non-hematopoietic cells (our unpublished

observation). The dysregulated homeostatic prolifera-

tion was observed in the CD4 cells from RA patients

[34]. Likewise, it is well established that lupus patients

have severe lymphopenia [35]. Y-chromosome-associat-

ed murine lupus was reported to be associated with

lymphopenia and homeostatic proliferation of T cells

[36]. Thus, understanding the molecular checkpoints of

homeostatic proliferation may have a general signifi-

cance for autoimmune diseases.
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Take-home messages

! The autoimmune diseases associated with FoxP3

mutation require both T cell-intrinsic defects that

result in defective development of regulatory T

cells and T cell-extrinsic defects in thymocyte

production.

! Defective T cell production is a general feature of

multiple autoimmune diseases. FoxP3 is likely the

first genetic link between autoimmune diseases and

immunodeficiency.

! Homeostatic proliferation may be the underlying im-

munological mechanism linking immune deficiency

to autoimmune diseases.
ED P
ROO
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