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Introduction

Multiple sclerosis (MS) is the most common inflamma-
tory disease of the central nervous system (CNS). The
disease affects approximately 2.5 million persons world-
wide, and is second only to trauma as the cause of
acquired neurological disability in young adults. MS
displays remarkable clinical heterogeneity. More than
80% present with relapsing remitting MS, with full or
partial recovery of neurological deficits between the
relapses. Most of these patients develop secondary pro-
gressive MS, with progressive clinical deterioration.
Approximately 10–15% of the patients have primary pro-
gressive MS without evident relapses from the onset.
Fifteen per cent of the patients with relapsing remit-
ting MS have benign disease course with minimal dis-
ability after 15 years, but a majority of them develops
a substantial neurological handicap. Patients with
primary progressive MS have no effect of available

immunomodulatory therapies, and face the most severe
prognosis.

The basic pathology characterized by perivascular leu-
cocyte infiltration and axonal transsection was recog-
nized in the middle of the 18th century, and the
intrathecal synthesis of IgG was described during World
War II [1]. The animal model experimental autoim-
mune encephalomyelitis (EAE) was developed more than
75 years ago to study acute disseminated encephalomye-
litis complicating vaccination with rabies virus grown
in brain tissue [2]. Several therapeutic targets in MS
have been identified in the EAE model, and therapeutic
progress has mainly been achieved where the pathogene-
sis of MS and EAE intersects, such as the transmigra-
tion of lymphocytes across the blood–brain barrier.
During the last 15 years, five immunomodulatory drugs
have been approved for the treatment of relapsing
remitting MS, and several others have entered clinical
trials (Table 1).
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Abstract

During the last few years, the concept of multiple sclerosis (MS) as a pure
inflammatory disease mediated by myelin reactive T cells has been challenged.
Neither the specificity nor the mechanisms triggering or perpetuating the
immune response are understood. Genetic studies have so far not identified
therapeutic targets outside the HLA complex, but epidemiological and immu-
nological studies have suggested putative pathogenetic factors which may be
important in therapy or prevention, including the Epstein–Barr virus and vita-
min D. Advances in the treatment of MS have been reached by manipulating
the immune response where the pathogenesis of MS intersects experimental
autoimmune encephalomyelitis, most recently by blocking T-cell migration
through the blood–brain barrier. Antigen-specific approaches are effective in
experimental models driven by a focused immune response against defined
autoantigens, but MS may not fit into this concept. Novel candidate autoanti-
gens which are not constitutively expressed in the brain, such as protein a-B
crystallin or IgG V-region idiotopes, as well as evidence of pathogenetic het-
erogeneity and complexity, suggest that treating MS by tolerizing the immune
system against an universal MS antigen may be a fata morgana. Further charac-
terization of MS subtypes may lead to individualized treatment. However,
shared immunological features, such as intrathecal production of oligoclonal
IgG, suggest that potential therapeutic targets may be shared by most MS
patients.
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Current and emerging MS therapy is only partially
effective, particularly because the long-term effect on pro-
gression of disability is poor. Interferons and glatiramer
acetate are immunomodulators which modulate T-cell
activation and reduce inflammatory mediators (Table 1),
and reduce the relapse rate in relapsing remitting MS
with one-third. The anti-neoplastic drug mitoxantrone
suppresses the proliferation of lymphocytes and macroph-
ages, impairs antigen presentation and inhibit B-cell
function and antibody production, and is used for severe
forms of relapsing remitting and secondary progressive
MS. Natalizumab targets a4b1-integrin mediated cell
migration across the blood–brain barrier, and is probably
more effective than glatiramer acetate and interferons [3],
but is associated with an 1:1500 annual risk of progres-
sive multifocal leukoencephalopathy (PML). PML is a
lethal or devastating opportunistic infection caused by JC
virus, and is probably a consequence of reduced immuno-
surveillance of the brain. Fingolimod, also called
FTY720, reduced relapse rate by almost 50% in a proof-
of-concept study [4]. Fingolimod inactivates sphingosine-
1-phosphate receptors which are necessary for thymocytes
and lymphocytes to egress from the thymus and secon-
dary lymphoid organs, where the cells become seques-
tered [5]. Opportunistic infections may, therefore, be a
concern also for fingolimod.

In our view, the main factor limiting the improve-
ment of MS therapy is not limited translation from basic
research to pharmaceutical agents, but rather the restric-

ted knowledge of the aetiology and pathogenesis of MS.
The mechanisms breaking immune tolerance, the specific-
ity and pathogenetic significance of the immune response,
the mechanisms perpetuating it and the relationship
between inflammation and neuronal degeneration are not
fully understood. In this paper, we explore some aspects
of MS which are poorly mirrored by current animal mod-
els, and point out possible implications for therapy.

Aetiology: genes

A genetic basis for MS is evident from the concordance
rate of 13–30% in monozygotic twins and 3% in
dizygotic twins [6]. It is commonly believed that this
leaves at least 70% of MS aetiology to environmental
factors. However, it is often forgotten that monozygotic
twins cease to be genetically identical as the immune sys-
tem develops, because V(D)J recombination in the T-cell
receptor (TCR) and immunoglobulin (Ig) genes and the
somatic hypermutation in immunoglobulin V-genes will
lead to a different set of TCR and Ig. Thus, the stochas-
tic factors involved in MS development may be the ran-
dom generation of B-cell receptors and TCR [7].
Association with HLA-A3 was noticed in 1972 [8], and
was soon found to be secondary to a primary association
with HLA-DR2. Since then, several association studies
and genome wide linkage screens have been performed,
and the only association that has been shown consistently
in Northern Europeans is to the HLA-DR15 haplotype

Table 1 Some current and emerging therapeutic agents in MS, extended from [100] by information from National Institute of Health website http://

www.clinicaltrials.gov/ and National MS society website http://www.nationalmssociety.org/.

Disease component MS type Assumed mechanism Target Agent Current status

Inflammation Relapsing-remitting Downregulating MHC and

costimulation

Type 1 IFNR IFN-b1a, IFN-b1b Approved ⁄ phase IV

Blocking lymphocyte trafficking A4b1-integrin Natalizumab Approved

S1PR Fingolimod Phase III

Th1–Th2 shift, Treg, trophic

factors

HLA, TCR Glatiramer acetate Approved ⁄ phase IV

Reduce T-cell activation PPAR-c Pioglitazone Phase 1

HMG-CoA reductase Statins Phase II ⁄ III
IL-2R Dacluzimab Phase II

Vitamin D receptor Vitamin D Phase II completed

B-cell depletion CD20 Rituximab Phase III

Leucocyte depletion CD52 Alemtuzumab Phase III (suspended)

Adenosine deaminase Cladribine Phase III

DNA Cyclofosfamide Phase II

Mitxantrone Approved ⁄ phase IV

Neurodegeneration Progressive Blocking sodium influx Sodium channels Lamotrigine Phase II

Brain-derived nerve growth

factor

TrkB Glatiramer acetate Approved ⁄ phase IV

Blocking glutamate

neurotransmission

NMDA receptors Memantine Phase II

Growth factors Demyelinated neurons Mesenchymal stem

cells

Phase 1 ⁄ IIA

IFNR, interferon receptor; PPAR, peroxisome proliferator-activated receptor; S1PR, sphingosine-1-phosphate receptor; TrkB, tyrosine kinase recep-

tor B.
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(DRB1*1501, DQB1*0602). This association is quite
strong (relative risk approximately 4), but carrying the
HLA- DR15 haplotype has little or no influence on the
disease course or the severity [9]. There is, however, a
gene-dose effect, as homozygosity for HLA-DR15 is asso-
ciated with severe MS [10]. A dose effect of HLA class II
genes is also observed in celiac disease [11], probably
caused by enhanced presentation of gluten peptides [12].
A similar mechanism could be operating in MS, but can-
not be established as long as the target antigen of the
immune response has not been defined.

Association with HLA class II supports a prominent
role for CD4+ T cells in MS, and the identification of the
susceptibility alleles is important in attempts to develop
specific immunotherapy. However, strong linkage dis-
equilibrium makes it difficult to establish whether
DRB1*1501 or DQB1*0602 confer the disease risk.
Some Norwegian MS patients carry DQB1*0602 and not
DRB1*1501, while none have DRB1*1501 in the
absence of DQB1*0602, suggesting that DQB1*0602 is
the primary susceptibility allele [13]. In line with this,
association to HLA-DQB1*0602 and not to HLA-DRB1
alleles was found in Afro-Brazilian MS patients [14].
However, later studies on Afro-Americans and Sardinians
suggest that MS is most closely associated with HLA
DRB1*1501 rather than DQB1*0602 [15].

Although association of genome wide significance to
loci outside the HLA region has not been found in MS,
approximately 50 such loci have been identified in rodent
EAE models [16]. MS is extremely heterogenous, and
polymorphisms in non-HLA genes might be important
in subgroups of patients, as suggested by their association
with cytotoxic T-lymphocyte antigen (CTLA)-4 in MS
patients from families with accumulation of other auto-
immune diseases [17]. Subgrouping of MS patients is
being hampered by the lack of available biomarkers.
However, antibodies against aquaporin (AQP)-4 were
recently found in serum from NMO patients, a demyeli-
nating disease of the optic nerves and spinal cord closely
related to MS, and is now used as a biomarker to distin-
guish NMO from common MS [18] This observation
supports that subgroups of common MS may also be
immunologically distinguishable, and respond differently
to immunological treatment.

Aetiology: environmental triggers of disease

Multiple sclerosis is most frequent in industrialized coun-
tries with temperate climate. People migrating from low-
to high-risk areas before the age of 15 acquire an
increased MS risk, suggesting that environmental factors
in early life trigger MS. This is supported by the emer-
gence of MS among the black population of the Carib-
bean islands, where MS has been rare [19]. Increase in
MS incidence is most prominent in Martinique, which

has received a substantial ‘return migration’ from metro-
politan France, where MS is more common. Those who
had lived in metropolitan France until 15 years of age
had the highest MS risk. Studies of adoptees and step-
siblings suggest that familial clustering of MS is caused
by shared genes and not by shared environment [20].
Environmental triggers of MS are, therefore, likely to be
widely distributed in areas where MS is common, and
not rare microbes or toxins selectively striking those who
subsequently develop MS.

Epstein–Barr virus (EBV) infection and vitamin D
deficiency are examples illustrating the value of combi-
ning epidemiology and immunology. EBV infects a
majority of the population. Delayed primary infection is
common in developed countries and is associated with
infectious mononucleosis, which increases MS risk with a
factor of approximately 2.5 [21]. EBV infection is closely
associated with MS, because virtually all MS patients are
EBV seropositive [22], including children who are other-
wise often EBV seronegative [23]. Moreover, MS risk is
strongly correlated with the titre of EBV nuclear antigen
(EBNA)-antibodies prior to disease [24].

The mechanism linking MS and EBV is not estab-
lished, but could involve the activation of myelin basic
protein (MBP)-specific T cells by cross-recognition of
EBV. This is supported by the finding that a T-cell clone
from an MS patient cross-recognized an MBP peptide
presented by DRa1*0101, DRb1*1501 and an EBV
peptide presented by DRa1*0101, DRb1*0101 [25]. To
test the relevance of cross-reactive T cells in MS, we gen-
erated DR-restricted CSF T-cell clones specific to the
EBV peptide from an MS patient with the relevant DR
alleles [26]. Eight of the 14 EBV-specific T-cell clones
cross-recognized the MBP peptide, suggesting that cross-
reactive T cells are prevalent in the CSF. However, it
must be emphasized that EBV-specific T cells were only
detected in CSF from one of the two patients studied,
and that this MS patient displayed brisk proliferative
T-cell responses to MBP in blood, which is quite uncom-
mon, and the results may, therefore, not be fully repre-
sentative for MS.

The association between MS and vitamin D was first
suggested from observations of covariation between the
MS incidence and fish consumption in Norway [27], and
is supported by the north-south gradient of MS preval-
ence in Australia; the MS risk being more than seven
times higher in Tasmania than in tropical Queensland
[28]. MS incidence correlates inversely with past exposure
to UV radiation [29], as well as vitamin D levels in the
blood prior to onset of MS [30].1,25-dihydroxyvitamin
D3 receptors are expressed on activated lymphocytes [31],
and picomolar concentrations of 1,25-dihydroxyvitamin
D3 suppress IL-2 induced T-cell proliferation [32]. 1,25-
dihydroxyvitamin D3 has been shown to prevent and
suppress progression of EAE [33]. Suppression of EAE is
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associated with the modulation of the JAK ⁄ STAT path-
way in the IL12 ⁄ IFN-c axis, leading to Th2 differenti-
ation [34]. 1,25-dihydroxyvitamin D3 fails to inhibit
EAE in IL-10 deficient mice, and may enhance an IL-10
dependent anti-inflammatory loop [35]. Vitamin D
supplementation to MS patients increased serum TGF-b
levels [36], but the clinical effect of vitamin D supple-
mentation is not settled.

Inflammation versus neurodegeneration

Active white matter MS lesions are characterized by acti-
vated microglia and macrophages containing myelin deb-
ris, reactive astrocytes, T-cell infiltration, a few B cell
and plasma cells, demyelinated axons and variable axonal
destruction [37]. Thus, MS involves both inflammation
and neurodegeneration, but the temporal and causal rela-
tionship between these components of MS is controver-
sial, and could differ between the various regions of the
brain. MS has been regarded as a disease of the white
matter but during the last few years, widespread grey
matter involvement has been re-discovered. Whereas
demyelination is a shared feature between white and grey
matter MS lesions, inflammation is much less prominent
in grey matter compared with white matter lesions. The
number of T cells and macrophages in cortical MS
lesions is comparable to that of cortex from non-neuro-
logical control patients [38]. The extent of grey matter
involvement has so far been hard to study in vivo, but
seems to be most prominent in the late stages of the
disease.

T-cell infiltrates are present in the spinal cord also
from patients with neurodegenerative diseases like amyo-
trophic lateral sclerosis [39]. An extreme view would be
that MS is a primary degenerative disease, with a secon-
dary immune response which could be either reparative,
detrimental or both. This view is supported by observa-
tions in a study of biopsies and autopsies from acute MS
cases, showing that activation of microglia and oligo-
dendrocyte apoptosis preceded T-cell infiltration [40].
Interestingly, experimental data show that MBP-specific
T cells may contribute to protection against the CNS
damage after trauma. After partial crush injuries of the
optic nerve or spinal cord, rats injected with MBP-speci-
fic T cells recovered better than control rats injected with
OVA-specific T cells [41]. MBP-specific T cells accumu-
lated in the lesions, suggesting that protection is medi-
ated by infiltrating T cells. Activated MBP-specific T
cells produce brain-derived nerve growth factor upon
activation, and neuroprotective effects of T cells may
involve secretion of trophic factors [42].

During the last few years, the heterogeneity of MS has
extended to comprise the pathology of active demyelinat-
ing lesions, which may reflect different pathogenetic
pathways in MS. Based on 51 biopsies and 32 autopsies,

Lucchinetti et al. [43] identified four patterns of white
matter demyelination. T cells were present in all pat-
terns, but pattern I was compatible with demyelination
induced by macrophages and their toxic products, pattern
II by antibodies and complement, and pattern III and IV
with virus or toxins rather than immune-mediated cyto-
toxicity. Only one pattern was present in each patient.
The relevance of this subtyping was recently supported
by a therapeutic trial of plasma exchange: All the 10
patients with pattern II, but none of the nine patients
with patterns either I or III responded favourably [44].
However, it must be emphasized that the subtyping is
based on a highly selected material which probably has
an over-representation of atypical MS cases, as biopsy is
not performed as a diagnostic procedure in MS unless
other diseases like tumour, infection or vasculitis are sus-
pected.

T cells in MS and EAE

CD4+ T-cell responses against MBP, myelin oligodendro-
cyte protein (MOG), myelin associated protein (MAG)
and proteolipid protein (PLP) have been extensively stud-
ied in EAE and MS, reviewed in [45]. To some extent,
human and murine immunodominant epitopes overlap.
In MS, HLA DRB1*1501 restricted CD4+ T-cell
responses have been found particularly against MBP
85–99 [46, 47], but T cells from both MS patients and
controls seem to recognize several epitopes spread
throughout the MBP molecule [48].

In EAE, immunization with adjuvant and myelin pro-
teins or adoptive transfer of activated myelin specific
CD4+ T cells elicits a Th1-cell response that orchestrates
an attack on CNS myelin. Furthermore, EAE develops
spontaneously in transgenic mice expressing human TCR
specific for MBP, HLA-DRa1*0101, DRb1*1501 and
human CD4 [49]. The prominent role for myelin-specific
CD4+ T cells in MS is less obvious. MBP-specific CD4+

T cells are part of the normal naı̈ve T-cell repertoire and
have been repeatedly detected in comparable frequencies
in the blood of MS patients and healthy controls in pro-
liferation assays [46, 50–53]. Thus, it is not evident that
tolerance to myelin proteins is broken in MS.

Evidence supporting a role for myelin-specific CD4+ T
cells in MS includes increased frequencies of MBP-, PLP-
and MAG-specific CD4+ T cells in blood and CSF detec-
ted in ELISPOT assays compared with controls [54, 55],
and the elevated precursor frequency in the blood of
CD4+ T cells specific for MBP 84–102 during clinical
exacerbations [56]. Furthermore, MBP-specific CD4+

T cells in blood are clonally expanded [47]. It has also
been reported that MBP reactive T cells from MS patients
display increased number of mutations in the hypoxan-
thine guanine phosphoribosyltransferase gene, which is a
marker of the cell division [57].
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The encephalitogenic potential of myelin-specific
CD4+ T cells in humans was demonstrated in a clinical
study of an altered peptide ligand corresponding to MBP
83–99. Subcutaneous injection of this altered peptide lig-
and was followed by clinical relapses and emergence of
Th1 cells cross-recognizing the altered peptide ligand
and MBP 83–99 [58]. However, this observation could
just as well be the effect of non-physiological activation
of MBP-specific T cells being present in the naı̈ve reper-
toire, rather than being mediated by T cells of general
pathogenic significance in MS.

Studies on CD8+ T cells have played a minor role in
MS and EAE research, although CD8+ T cells outnumber
CD4+ T cells in the centre of MS lesions [59]. Clonal
expansion of CSF and infiltrating CD8+ T cells is more
prominent than for CD4+ T cells [60]. In one patient,
35% of infiltrating T cells belonged to a single CD8+

T-cell clone, and CD8+ T-cell clones were detected in
the CSF several years after their initial discovery in CNS
plaques [61]. Recently, it was shown that EAE could be
induced by adoptive transfer of MBP- and MOG-specific
CD8+ T cells [62, 63]. Little is known about the specific-
ity of CD8+ T cells in MS. Increased precursor frequen-
cies of CD8+ T cells specific for transaldolase, as well as
MBP 111–119 and MBP 87–95 have been reported in
blood of HLA-A2 positive MS patients [64, 65].

Antigen-specific therapies

Given the limited effect and possible serious adverse
effects of currently used MS treatment, antigen-specific
therapy is an attractive approach. Prevention of EAE by
injection of CNS homogenates was demonstrated 50 years
ago [66], suggesting the therapeutic potential in human
demyelinating disease [67]. Several approaches, including
oral and intravenous administration of myelin proteins
and peptides, antibodies against TCR of myelin-specific
T cells and vaccination with myelin-specific T cells
ameliorate or prevent EAE, reviewed in [68, 69]. Some
promising results have also been achieved in MS. In a
phase II clinical trial, intravenous infusions of an immu-
nodominant MBP 82–98 peptide suppressed anti-MBP
antibodies in CSF and delayed disease progression in all
the 20 patients carrying the HLA haplotypes DR2 or
DR4 [70]. A phase II study of infusion of 5, 20 or
50 mg of a peptide corresponding to MBP 82–98 with
altered contact sites for the TCR, but preserved binding
sites to HLA, was suspended due to anaphylactic reac-
tions [71]. A Th2 response against the peptide aroused
within 1 week and waned after 1 month, and was
followed by a Th2 response against native MBP after
6–10 weeks. However, the only detectable clinical effect
was a reduction in inflammatory activity measured radio-
logically in the subgroup which received 5 mg of altered
peptide.

The concept of T-cell vaccination in MS emerged from
the observation that the injection of attenuated MBP-spe-
cific T cells prevented EAE [72]. T-cell vaccination in
autoimmune diseases is based on the assumption that
TCR from autoaggressive T cells carry idiotopes within
their hypervariable regions, which could be targeted by
an idiotype-specific regulatory network [73]. Rapid deple-
tion of myelin-specific T cells is mediated by CD8+ anti-
idiotypic CD8+ T cells [74]. Furthermore, immunization
with activated T cells induces immune responses against
cellular activation markers, such as the IL-2 receptor
a-chain and heat-shock protein 60 [75, 76]. In a recent
vaccination study of MS patients with autologous T cells,
regulatory T cells expanded by the vaccine specifically
recognized peptides from the IL-2 receptor receptor
a-chain. Similar results, accompanied by substantial clini-
cal improvement, have been obtained in rheumatoid
arthritis [77]. The clinical effect of T-cell vaccination in
MS has not yet been established, but clinical trials are
ongoing.

So far, clinical results of antigen-specific treatment of
MS based on myelin proteins and myelin-specific T cells
have generally been disappointing. An example was the
negative results of oral administration of 8 mg MBP and
15 mg PLP in a phase III study including 515 MS
patients [78], which followed the promising results
obtained in a pilot study of oral tolerization with bovine
myelin [79]. In addition to technical questions related to
strategy of tolerance induction, antigen-specific therapies
in MS face a fundamental problem as the target antigens
have not been firmly identified. A prerequisite for anti-
gen-specific treatment is the existence and identification
of a dominant immunogen in each patient. T-cell
responses against myelin antigens in MS are polyclonal
and target diversified T-cell epitopes, and the patho-
genetic significance is unknown and could be heterogene-
ous. Thus, antigens involved in EAE could be less
relevant in MS, or epitope spreading could have broad-
ened the specificity of the immune response beyond the
initial trigger.

Another problem is the timing of treatment. As other
experimental treatments, antigen-specific therapies are
often offered to patients in an advanced stage of the dis-
ease. At this stage, degenerative processes may have
become independent of inflammation. In line with this,
treatment of secondary progressive MS patients with
alemtuzumab, a monoclonal antibody targeting CD52 on
all T cells and B cells, almost blocked intrathecal inflam-
mation, but did not hinder the progression of brain atro-
phy and clinical disability [80].

Novel candidate T-cell target antigens in MS

During the last several years, two novel candidate T-cell
autoantigens, which are not constitutively expressed in
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the brain or characterized in EAE, have been suggested
in MS.

a-B crystallin

The small heat-shock protein a-B crystalline was identi-
fied by the stimulation of human T cells with fractions
of myelin proteins from brain specimens [81]. The sti-
mulating fraction was only detectable in MS brains, and
was identified as a-B crystallin. Expression of a-B crys-
tallin is upregulated in oligodendrocytes from active
MS lesions, where the protein is detectable within
phagosomes of perivascular macrophages [82]. EBV-
transformed human B cells express a-B crystalline, and
a-B crystalline-specific T cells recognize autologous
EBV-transformed B cells [83]. The ‘mistaken self’ hypo-
thesis suggests that a-B crystallin-specific T cells
become activated during EBV infection, and that these
T cells recognize a-B crystallin expressed in the
inflamed brain [84].

Mice constitutively express a-B crystallin in lymphoid
tissue, and seem to be resistant to EAE induced by this
antigen [85]. a-B crystallin-specific T cells can be gener-
ated in a-B crystallin-knockout mice, but adoptive trans-
fer of such T cells did not induce EAE in wild type mice
[86]. However, transfer of a-B crystalline-specific T cells
induced EAE in mice infected with avirulent Semliki forest
virus, supporting that inflammation of the target organ is
essential for disease induction [87].

Immunoglobulin idiotopes as T-cell antigens

B cells may present endogenous V-region sequences on
MHC class II molecules to idiotope-specific T cells [88,
89]. T cells are generally tolerant to germline-encoded
IgG, and somatic mutations seem to be critical for T-cell
recognition of V-region epitopes [90]. The relevance of
T-cell responses to IgG idiotopes in autoimmune diseases
has been demonstrated in systemic experimental lupus
[91]. Furthermore, idiotope-driven T–B-cell collaboration
elicits autoimmune disease in transgenic mice [92].

Perpetuating intrathecal synthesis of oligoclonal IgG
of unknown specificity [93], as well as intrathecal synthe-
sis of IgG against several viruses [94, 95], are immunolo-
gical hallmarks of MS. Clonally expanded B cells from
MS brains and CSF have undergone somatic hypermuta-
tion [96, 97]. Thus, these sequences are non-self to
immune system, and could, therefore, be recognized by
idiotope-specific T cells. To test this hypothesis, we ana-
lysed T-cell responses in blood from MS patients and
controls against IgG purified from autologous CSF [53].
T cells from 14 of the 21 MS and four of the 17 control
patients recognized autologous CSF IgG. The amount of
IgG which could be purified from each patient did not
allow mapping of T-cell epitopes. To overcome this

problem, we established EBV-transformed B-cell lines
from CSF of two MS patients, which produced monoclo-
nal IgG [98]. T-cell clones from blood and CSF from
both patients recognized autologous, but not heterolo-
gous, monoclonal CSF IgG in the context of HLA
DRB1*1501- or DRB1*1302-encoded molecules, and
a T-cell epitope was mapped to a mutated framework
region. These results suggest that idiotope-driven
T–B-cell collaboration could offer an explanation to the
perpetuating intrathecal synthesis of IgG in the absence
of an overt T-cell antigen in MS.

So far, neither the association between immunopatho-
logical heterogeneity of white matter lesions nor the
extent of cortical involvement and intrathecal production
of IgG has been established. However, a vast majority of
the patients display intrathecal synthesis of oligoclonal
IgG, and idiotope-driven T–B-cell collaboration could,
therefore, be a shared phenomenon in between different
pathogenetic subtypes of MS. This process is most likely
to occur within inflamed white matter rich in lympho-
cytes, but could also take place in ectopic meningeal ger-
minal centres which are found predominantly in the later
stages of the disease.

Modulation of idiotope-driven T–B-cell collaboration
may be a potential mechanism for B-cell directed therapy
in MS, including plasma exchange, mitoxantrone and rit-
uximab, because these treatments may modulate idio-
tope-driven T–B-cell collaboration by removing IgG and
B cells carrying immunogenic idiotopes. It should be
kept in mind that the knowledge of the precise mechan-
ism of action of several drugs used in MS is limited, and
that treatments designed to target T cells may also have
a substantial effect on B cells. In line with this, it was
recently reported that a4b1-integrin was more abun-
dantly expressed on CD19+ B cells than CD3+ T cells
[99]. B cells carrying immunogenic idiotopes, might
therefore be a target also for natalizumab.

Concluding remarks

The complexity of MS includes combinations of genetic
predisposition, environmental triggers, clinical presenta-
tions and possibly pathogenetic mechanisms. The search
for novel treatments could either focus on identification
of therapeutic targets in particular subgroups of
patients, or identification of common targets where the
pathogenetic pathways merge. The perpetuating intra-
thecal production of oligoclonal IgG might be such a
common pathway, because it occurs early and is shared
by a vast majority of relapsing remitting MS patients.
However, as for several other features of the disease, we
face uncertainties concerning the exact pathogenetic role
of this phenomenon; it could mediate both protective
and detrimental effects. This question will hardly be
answered in vitro, and calls for even closer collaboration
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between researchers working with animal models and
humans.
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