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S U M M A R Y

Two members of the morbillivirus genus of the family Paramyxoviridae, canine distemper virus (CDV) and measles
virus (MV), are well-known for their ability to cause a chronic demyelinating disease of the CNS in their natural hosts,
dogs and humans, respectively. Both viruses have been studied for their potential involvement in the neuropathogenesis
of the human demyelinating disease multiple sclerosis (MS). Recently, three new members of the morbillivirus genus,
phocine distemper virus (PDV), porpoise morbillivirus (PMV) and dolphin morbillivirus (DMV), have been
discovered. These viruses have also been shown to induce multifocal demyelinating disease in infected animals. This
review focuses on morbillivirus-induced neuropathologies with emphasis on aetiopathogenesis of CNS demyelina-
tion. The possible involvement of a morbillivirus in the pathogenesis of multiple sclerosis is discussed. Copyright #
2007 John Wiley & Sons, Ltd.

Received: 6 July 2006; Revised: 23 October 2006; Accepted: 2 November 2006

INTRODUCTION
The morbillivirus genus consists of a group of sin-
gle-stranded, negative-sense RNA viruses belong-
ing to the family Paramyxoviridae [1]. Until 1988 the
genus was thought to consist of only four mem-
bers; measles virus (MV), rinderpest virus (RPV),
peste-des-petits ruminants virus (PPRV) and
canine distemper virus (CDV). Since then, three
other members of the morbillivirus genus have
been discovered, all infecting aquatic mammals,
dolphin morbillivirus (DMV), porpoise morbilli-
virus (PMV), both strains of the member cetacean
morbillivirus (CeMV), and phocine distemper

virus (PDV) [2,3] (Figure 1). This is the first time
that members of this genus have been shown to
infect aquatic animals, possibly demonstrating
their ability to mutate and shift between hosts
quickly [4]. The morbillivirus genus as a whole
has a wide host range (Figure 2), as have most of
its members, and cross-species infections have
been reported on several occasions, sometimes
with devastating outcomes [4–8].
In the following sections, we describe the neuro-

pathology of these viral infections as most mem-
bers of the genus exhibit a high degree of
neurovirulence [9]. In particular, we focus on
demyelination of the CNS, which may be relevant
for the pathogenesis of multiple sclerosis (MS)
[5,10–20]. To understand pathologies of the CNS
and the concept of demyelination properly, one
needs to have a basic knowledge of normal CNS
functioning. Therefore, we briefly outline the nor-
mal cellular organisation of the CNS.

CELLULAR ORGANISATION
OF THE CNS
The CNS is divided into two types of cells: neu-
rons and neuroglia (Figure 3). The neurons are
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the cells in which the actual signal transduction
takes place. A neuron typically consists of a cell
body with dendrites, conducting incoming infor-
mation from other neurons, and axons, conducting
information towards other neurons [21]. The neu-
ronal cell bodies are located in the cortex or grey
matter, which, with a thickness of only a few milli-
metres, makes up the outer brain. The axons
which connect the cortex with other parts of the
brain and the spinal cord are located in the inner
brain, commonly referred to as white matter. The
neuroglia outnumber neurons by a factor of 10.
There are four subtypes of neuroglia in the CNS,
ependymal cells, oligodendrocytes, microglia and
astrocytes. Ependymal cells line the ventricles of
the CNS and by beating their cilia, which are
located on the apical cell membrane, help to circu-
late the CSF.
Oligodendrocytes are essential for the formation

and maintenance of myelin sheaths, which are
wrapped around the axonal membranes. Due to
the presence of these isolating myelin layers,

Figure 1. Phylogenetic tree showing the interindividual relation-

ships between the different morbilliviruses, based on sequence

analysis of genes encoding the H protein. Converging lines

mark possible locations of ancestral viruses within the genus.

Reproduced with kind permission of Reference 211

Figure 2. An overview of the species most commonly affected by the different morbilliviruses. (A) Characteristic rash on the chest of a

child infected with MV. Courtesy of the Clinical Virology Network (www.clinical-virology.org). (B) A cow, markedly depressed due to

infection with RPV. Courtesy of the Foreign Animal Disease Diagnostic Laboratory, Plum Island Animal Disease Center, NY, USA.

(C) A goat infected with PPRV; notice the swollen lips and exudate in the nostrils. Courtesy of Professor T.U. Obi, Department of

Veterinary Medicine, University of Ibadan, Nigeria. (D) Mucopurulent ocular discharge in a dog infected with CDV. Courtesy

of Professor D.E. Brooks, College of Veterinary Medicine, University of Florida, FL, USA. (E) A harbour seal (Phoca vitulina)

stranded on the British coast as a result of PDV infection. (F) a stranded striped dolphin (Stenella coeruleoalba). Courtesy of the Irish

Whale and Dolphin Group
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interrupted at regular intervals by the so-called
nodes of Ranvier, the speed and efficacy of signal
transduction between neurons is increased greatly.
Where myelin is lost, as is the case in demyelinat-
ing disease, the CNS starts to dysfunction heavily
because of the distorted signal transduction in
affected axons [21]. Microglia are the ‘macro-
phages’ of the CNS and become recruited and acti-
vated during infection or injury. They are
physiologically and embryologically unrelated to
the other cell types of the CNS [21]. Astrocytes
are the most numerous glial cells. Connected
with their feet-ends to the blood brain barrier
and their other ends to the other CNS cell types,
they are the main supportive cells of the CNS, pro-
viding energy and nutrients to other CNS cell
types and playing an essential role in normal
homeostasis and the maintenance of physiological
electrolyte gradients within the CNS [21].

MEASLES VIRUS
MV is probably the most well-known member of
the morbillivirus genus. The virus naturally infects
humans, mostly children, and is extremely conta-

gious with a basic reproduction number, that is
the number of secondary cases following an index
case in a susceptible population, of more than 15
[22]. Although effective vaccination programmes
have been set up in most developed countries,
the virus remains responsible for the death of
nearly 800 000 children each year, mostly in the
developing world [23]. Before the introduction of
vaccines and a global eradication programme co-
ordinated by the WHO [24], death rates may
have been as high as 7–8 million children annually.
Apart from its clear potential to cause disease in
susceptible humans, interestingly, MV is also
being studied as a potential oncolytic agent. The
results of pre-clinical studies regarding the oncoly-
tic efficacy of MV, as well as future perspectives,
have recently been reviewed [25].
MV consists of a 100–300 nm long virion sur-

rounded by a lipid envelope. The viral genome
consists of six transcriptional units, encoding two
non-structural proteins and, as in most morbilli-
viruses, six structural proteins [5] (Figure 4). Three
structural proteins, the nucleocapsid (N), phos-
pholipid (P) and large (L) protein, are associated

Figure 3. The cellular organization of the CNS; reproduced from McKinley M, O’Loughlin V. Human Anatomy. McGraw-Hill: New

York, 2006; Chapter 14 (with kind permission of Mc-Graw Hill).

Involvement of morbillivirusesInvolvement of morbilliviruses

Copyright # 2007 John Wiley & Sons, Ltd. Rev. Med. Virol. (in press)
DOI: 10.1002/rmv



with the viral RNA and make up a helical ribonu-
cleoprotein (RNP) complex. The haemagglutinin
(H) and fusion (F) envelope glycoproteins form
oligomeric spikes, which protrude from the viral
surface and are visible by electron microscopy.
The H protein binds to cellular receptors whereas
the F protein mediates virus entry into host cells.
Most virus-neutralising antibodies are directed
against the H protein of the envelope [26,27]. The
inside of the membrane is coated by a hydropho-
bic protein named the matrix (M) protein. This
protein serves several roles and is particularly
involved in virus budding and transcription regu-
lation [28,29]. Many genomic sequences have been
obtained for both wild-type and vaccine strains of
MV, which mostly differ in nucleotide sequences
encoding the terminal part of the N protein and
the entire H protein [30–33]. In spite of these dif-
ferences in genotype, the virus exists as a single
serotype and infection with one strain provides
life-long protection from disease caused by all
strains. Within the morbillivirus genus, MV is phy-
logenetically most closely related to RPV [1].
MV spreads within aerosol droplets and, after

inhalation, initially replicates in the upper respira-
tory tract. Secondly, cells of the immune system
become infected, which are the main route for

further virus spread [34]. Apart from its direct
effects on the immune system, MV also has indir-
ect, longer-lasting effects on the immune system,
in which the interaction between several viral pro-
teins and the human host seems to play a role
[35,36]. As a result, patients with measles develop
a clear immunosuppression, which can last up to
6 months after an acute infection and increases
their susceptibility to secondary infections [35].
General symptoms of an acute MV infection

consist of a maculopapular rash, dry cough, cory-
za, fever, conjunctivitis and photophobia, usually
preceded by characteristic spots on the mucosal
surface of the mouth, called Koplik spots (Figure 2).
The most serious complications of MV infection
occur within the CNS, which may take three forms:
acute disseminated encephalomyelitis (ADEM),
measles inclusion body encephalitis (MIBE) and
subacute sclerosing panencephalitis (SSPE), the
last two occurring months or even years after
acute infection and being invariably fatal [5,37,38].

Acute disseminated encephalomyelitis
ADEM is not an exclusive complication of MV
infection and has also been seen following infec-
tions with other pathogens [39–44]. In measles, it
occurs about 5–6 days after the initial rash in about

Figure 4. Measles genome map showing the different proteins encoded by MV (A) as well as their structural representation. (B)

Reproduced with kind permission of Reference 35
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1/1000 infected children [38–44]. In vaccinees and
children under 2 years of age it is less common
[5,38–40]. Symptoms occur once the initial rash
has disappeared and consist of a sudden recur-
rence of fever, decreased consciousness, seizures
and multifocal neurological signs. The disease
has an abrupt onset, often reaching its peak within
the first 24 h. Mortality is about 20% [19]. The elec-
tro encephalo gram (EEG) is usually slow but non-
specific, given the fact that in half of all cases of
measles infection, even including uncomplicated
infections, EEG changes are seen [19,39]. The CSF
usually shows a mild elevation of protein and
mononuclear cells, but is normal in about one-
third of patients [19,39]. The clinical diagnosis of
ADEM is strongly suggested by a close temporal
relationship between an infectious incident or an
immunisation and the onset of leukoencephalo-
pathic neurological symptoms [19,39]. Particularly
helpful are acute signs of newly developed exten-
sive, multifocal and subcortical white matter
abnormalities on magnetic resonance images
(MRI) of the brain [39,40,45] (Figure 5).

The major differential diagnosis of ADEM is
multiple sclerosis [35]. No virus has as yet been

demonstrated in the brains of children who died
from ADEM [38,39,46] and, because of its rarity,
ADEM has been very hard to study.
The pathology of ADEM consists of a pattern of

widespread perivascular demyelination and infil-
tration of mononuclear cells. Histologically, the
pattern of demyelination resembles that observed
in experimental allergic encephalomyelitis (EAE),
an animal model of MS [47,48]. The exact patholo-
gical mechanism of this demyelination remains
unclear. An autoimmune reaction has been sug-
gested, but at present there is no consensus about
the exact aetiopathology of ADEM [5,38,39].

Measles inclusion body encephalitis
MIBE usually occurs between 2 and 6 months after
MV infection in immunocompromised patients
[5,37,38,49–51] and can follow both wild-type virus
infection and vaccination [5,38,49–54]. Patients are
usually present with focal seizures and altered
mental state. Prognosis is poor with a 76% mortal-
ity rate and all survivors retain a persistent neuro-
logical disorder [51].
Characteristic neuropathologic changes are glial

cell proliferation and focal necrosis, with varying
degrees of perivascular inflammation. Intranuclear
and/or intracytoplasmatic inclusion bodies are
often present [38,51]. The diagnosis of MIBE can
only be confirmed post mortem, by RT-PCR for
MV RNA or by immunohistochemistry. A few
cases have been described in which MIBE fol-
lowed vaccination and here dysgammaglobulinae-
mia or a pre-existing undiagnosed immune
abnormality was suggested to be a predisposing
factor [53,54].
The mechanism of viral spread and persistence

in the brain in MIBE patients is not well under-
stood [5,38]. MIBE is not associated with an
increased antibody response to measles, as might
be expected in immunocompromised patients,
and oligoclonal bands are not present in the CSF
[5,38,51].
The most recent case report of MIBE described

the death of an immunocompromised boy who
had previously received stem cell therapy for
chronic granulomatous disease [55]. Neither
patient nor donor had recently been exposed to
MV, received recent MV vaccination or had
recently visited an endemic area. Brain biopsy on
day 53 post-transplantation demonstrated numer-
ous eosinophilic intranuclear inclusion bodies and

Figure 5. Axial MRI scan in a case of ADEM showing multifocal

subcortical white matter lesions (arrows)
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minimal perivascular inflammatory infiltrates.
Inclusions of varied sizes were seen in astrocytes,
oligodendroglial cells and neurons. Electron
microscopic examination showed that the inclu-
sions were clusters of relatively long, curved, tub-
ular structures consistent with paramyxovirus
nucleocapsids. Extensive demyelination of axons
was seen.

Subacute sclerosing panencephalitis
SSPE is thought to complicate about 1/1 000 000
cases of MV infection [5,19,38], although areas of
high incidence (1/10 000-1/25 000 cases) have
been reported [56]. SSPE occurs approximately 5–
10 years after initial MV infection, infection under
the age of 2 being a risk factor [57–60]. There is a
male preponderance of SSPE with a male/female
ratio of 2.5:1 [61]. In the early stage, children pre-
sent with loss of attention span and neurological
symptoms, typically stereotyped myoclonic jerks.
As the disease progresses, they gradually slide
into a vegetative state and eventually die from
the infection [62]. SSPE is an example of a chronic
defective CNS infection [63].
The first report of the disorder was in the early

1930s, describing characteristic viral inclusions
[64]. The association with MV came later when
the inclusions were shown to be MV-specific [65].
Inclusions are present in both cytoplasm and
nuclei of infected neurons [66] and, in later stages
of SSPE, small numbers of oligodendrocytes, astro-
cytes and endothelial cells seem to become
infected as well [67]. It is thought that these inclu-
sions are in fact sites of transcription and replica-
tion, but their exact nature has yet to be
determined. The disease is characterised by extre-
mely high anti-measles antibody titers in both ser-
um and CSF, with the finding of intrathecally-
synthesised MV-specific oligoclonal bands
[63,68]. Antibodies to structural proteins of MV,
especially N, F and H, are present in concentra-
tions almost 10 times higher than those seen in
acute infection [69]. As the name of the disease
suggests, histologically, there is a widespread
chronic inflammatory infiltrate of small lympho-
cytes and plasma cells, often in perivascular cuffs.
The white matter shows focal demyelination and
widespread astrogliosis, which are also the histo-
pathological hallmarks of MS. White matter
abnormalities can also be detected by MRI, espe-
cially in the late phase of the disease. White matter

abnormalities consist of high signal intensity areas
on T2-weighted images which, especially in the
early phase, tend to be located in the occipital
and parieto-occipital lobes [62,70,71] (Figure 6).
The factors that turn an acute MV infection into

a chronic one are as yet unknown, although var-
ious mechanisms have been postulated over the
years. Many of them have focused on mutations
of the viral genome, especially of gene sequences
encoding for proteins that are required for viral
budding and spread, such as the M protein
[5,38,69,72–75]. Defects in these proteins, leading
to limited viral spread or decreased budding,
could lead to a less virulent species, capable of
residing in its host for a prolonged period of
time. The observed high antibody titers could
also play an important role in the pathogenesis
of SSPE, aiding viral persistence by stripping viral
envelope proteins from the membrane surface [76].
In addition, in vivo studies in rat models demon-
strated that anti-measles antibodies not only pro-
mote viral persistence [77–79] but possibly even
decrease viral replication at the transcriptional
level [80]. In light of these theories it is interesting
that, although it seems clear that MV is the cause
of SSPE, its precise site of residence and replication
during the latency period between acute infection
and ‘relapse’ has never been established [5].
Although a commonly held belief, this may well
prove not to be in the CNS but somewhere else.
Even in the case of active CNS disease, there is lit-
tle evidence of infectious virus in the CNS itself,
but more of viral ‘footprints’, like the inclusion
bodies and intrathecal immune response described

Figure 6. T2-weighted MRI images showing hyperintense lesions

in white matter of the occipital and parieto-occipital lobes

(arrows) in SSPE; (A) axial scan and (B) coronal scan. Reproduced

with kind permission of Reference 70
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earlier. At autopsy or biopsy, generally no infec-
tious virus can be found in the CNS. Also in the
acute stage of MV infection, evidence of actual
CNS infection is mostly indirect [18]. However,
EEG abnormalities and CSF pleiocytosis [81],
occurring in about 30% of acute uncomplicated
MV infections, point to the virus gaining access
to the CNS during the acute phase. In this respect,
and in favour of the virus itself actually entering
the CNS, given the fact that measles virus infects
all peripheral white blood cell lines, it is possible
that the CNS is transiently infected via the normal,
or altered, turnover of microglia. Then, when the
virus has gained access to the CNS and has
crossed the blood-brain barrier, further CNS infec-
tion could ensue. This assumption is supported by
studies in rodent models which have shown that
activated T cells can enter the CNS parenchyma
[82] and that, additionally, B cells, secreting both
virus-specific- and non-virus-specific antibodies,
are recruited [83,84]. The same ‘Trojan-horse’
mechanism, in which infected monocytes enter
the CNS upon being recruited as macrophages,
has also been postulated to explain CNS involve-
ment seen in other types of virus infections infect-
ing cells of lymphocyte/leukocyte lineage, such as
Maedi-Visna virus and HIV [85–87].

The demyelination observed in SSPE could be
the result of several mechanisms. One possible
mechanism involves CSF antibodies, which, as
aforementioned, are produced in an unusual
high amount in SSPE and have been shown cap-
able of lysing brain cells cultured from SSPE
patients in vitro [88]. Other theories propose that
during the latency period, as MV is thought to
be slowly replicating in the brain, viral products
in neurons and oligodendroglia slowly increase
and eventually lead to cell death and demyelina-
tion [89]. Furthermore, infiltration by CD4þ and
CD8þ T cells and the release of inflammatory
cytokines such as IFN-� and TNF-� has been
demonstrated, suggesting that cell-mediated
damage to infected cells may play a role [90,91].

RINDERPEST VIRUS
Within the morbillivirus genus, RPV is phylogen-
etically most closely related to MV [1]. RPV natu-
rally infects cattle, but, like other members of the
morbillivirus genus, it has a broad host spectrum,
infecting many other large ruminants, both domes-
ticated and wild [92,93]. Nowadays largely eradi-

cated in most developed countries, the virus
remains endemic in large parts of the African con-
tinent, the Middle East and South Asia [94]. RPV
exists as a single serotype, but many different
strains are known [95]. These strains vary in their
host affinity and are capable of exhibiting different
levels and patterns of virulence within a single
host species, with infections ranging from subclini-
cal to fatal. Mortality rates of nearly 100% have
been observed in cases of infection of susceptible
species by a highly virulent strain of the virus
such as the Saudi strain [96–98]. Thus, infection
of the same host species with virus isolates of dif-
ferent pathogenicity leads to variations in clinical
signs, the extent of morphological lesions and viral
antigen distribution within the affected species
[96,97]. Furthermore, host preferences have been
known to change with time with disease presenta-
tion differing between hosts, as most clearly
demonstrated by the African panzootic [99–101],
which unambiguously demonstrated the tendency
of morbilliviruses to evolve and change hosts
quickly, as well as the subtleties of the interplay
between host and virus. Symptoms of a classical
virulent infection consist of an incubation period
of 3–9 days followed by a short sharp fever, ero-
sive stomatitis, gastroentereitis, fetid odour, dehy-
dration and death [93] (Figure 2).
At a pathological level, primary multiplication

of the virus occurs in the tonsils and pharyngeal
and mandibular lymph nodes, from where further
dissemination throughout the body takes place.
The principal targets of RPV so far identified are
epithelial cells and cells of the lymphoid system.
Post-mortem findings consist mainly of lesions in
lymphoid tissues, the alimentary, upper respira-
tory and urogenital tracts [96,102]. Demyelination
and CNS involvement have never been reported in
RPV infection of its natural wildlife hosts, possibly
because the acute infection is either devastating,
leading to a quick death, or mild or maybe even
undiagnosed. The potential of RPV to cause
demyelination in other host situations has been
shown in experiments with infected permissive
mouse strains, in which RPV indeed exhibited
neurovirulence [103].

PESTE-DES-PETITS-RUMINANTS VIRUS
First considered a variant of RPV, PPRV has now
long been recognised a fourth distinguishable
member of the morbillivirus genus [104]. The virus
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is most closely related to dolphin morbillivirus
and to a lesser extent to rinderpest and measles
[1,105,106]. PPRV, like RPV, is endemic in large
parts of Africa, the Middle East and India [107–
115]. It infects small ruminants, mostly sheep and
goats, and causes pyrexia, ocular and nasal dis-
charges, pneumonia, erosive stomatitis and severe
diarrhoea, usually preceded by a 3–4 day incuba-
tion period [113] (Figure 2). Morbidity and mortal-
ity rates vary, but can be as high as 90–100%. In
regions in which the virus is endemic these rates
tend to be lower [113].
The principal pathologic findings are seen in

lymphoid structures and the respiratory and
digestive systems [116–118]. As in rinderpest, gas-
trointestinal infection is usually characterised by
degeneration and necrosis of intestinal epithelium
and congestion of gastrointestinal mucosa and
submucosa. Pulmonary pathology includes broncho-
interstitial changes and the presence of intracyto-
plasmic and intranuclear eosinophilic inclusions
in alveolar macrophages and syncytial cells, fre-
quently complicated by serofibrinous pneumonia.
Furthermore, lymphocytolysis and syncytia for-
mation can be seen in lymphoid tissues. PPRV
antigen can be demonstrated in lymphoid, intest-
inal and pulmonary cells [116–120]. Neurological
complications have not been reported. However,
one study [117] interestingly described diffuse
gliosis in the molecular layer of the cerebellum in
the absence of PPRV positive staining. Like RPV,
PPRV has been shown to display neurovirulence
in experimentally infected mice [96].

CANINE DISTEMPER VIRUS
Neurologically, CDV is, together with MV, by

far the most studied member of the morbillivirus
genus. CDV has been considered an animal model
of MS for years [10].
As its name implies, CDV naturally infects dogs

(Figure 2). It is transmitted as an aerosol infection
to the upper respiratory tract. Primary virus repli-
cation occurs in the lymphoid tissues, as in other
morbillivirus infections [10,121,122]. After about
10 days, the virus starts to spread to various
epithelial tissues and the CNS. The mechanisms
of spread to the CNS are poorly understood but
a recent publication interestingly suggests that
invasion of the CNS can occur through at least
two different pathways. One route is the classical
haematogenous pathway through the choroid

plexus and cerebral blood vessels, while the other,
previously unrecognised, represents an antero-
grade pathway through the olfactory nerve [123].
The most serious complications of CDV infection
eventually occur in the CNS, presenting a variety
of clinical symptoms including optic neuritis, mye-
litis, ataxia, nystagmus, tremor, seizures, myoclo-
nus, paresis and psychic changes [10,14]. While
respiratory, intestinal and dermatological symp-
toms may occur as a result of epithelial infection,
neurologic signs often occur in the absence of sys-
temic signs [10].
Pathologically, the virus causes multifocal

demyelinating lesions in the grey and white matter
of the CNS. White matter demyelination generally
prevails and grey matter lesions may even be
totally lacking. The most frequently affected anato-
mical regions include the white matter of the cere-
bellum, the periventricular white matter, especially
around the fourth ventricle, the optic pathways
and the spinal cord [10]. Pathogenetically, the dis-
ease course and plaque formation are commonly
divided into an acute and a chronic phase.

Acute phase
Foci of demyelination occurring in the acute phase
of canine distemper encephalitis (CDE) seem to be
directly virus-correlated and their development is
highly predictable [10,124–128]. The most logical
explanation of the onset of demyelination would
be a primary infection of the myelin-producing oli-
godendrocytes. Therefore a large number of stu-
dies have focused on demonstrating the presence
of distemper virions in oligodendrocytes. How-
ever, at the light microscope level it has been
shown that the main white matter cells infected
are astrocytes [129] and most studies now agree
that oligodendrocyte infection is in fact extremely
rare in distemper [125,130–133].
Immunocytochemical studies revealing a small

number of oligodendrocytes containing CDV
mRNA [10], reports infection of a small number
of oligodendrocytes at the edge of lesions [128–
133], and the finding of a restricted CDV infection
with viral transcription but no translation in cul-
tured oligodendrocytes [134], eventually led to
the conclusion that CDV causes a restricted infec-
tion of oligodendrocytes [10]. Infection of cultures
of canine oligodendrocytes superimposed on a
layer of astrocytes showed degeneration, microva-
cuolation, loss of organelles, metabolic dysfunc-
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tion and decrease of myelin transcription in oligo-
dendrocytes [128,135,136]. The latter was also
shown in vivo [128], but there is no direct evidence
that these cells do indeed also undergo necrosis or
apoptosis [137,138]. Moreover, infection with wild-
type CDV seems to be rather non-cytolytic [10].

In summary, it is thought that, during the acute
phase of CDE, infection of the white matter results
in metabolic oligodendroglial changes which lead
to demyelination. Whether both dysfunction and
demyelination are the direct result of restricted oli-
godendroglial infection or of other processes
remains to be shown [139–147].

Chronic phase
The chronic phase of CDE is characterised by a
strong inflammatory reaction, consisting of peri-
vascular cuffing with lymphocytes, plasma cells
and monocytes [148], and leading to progression
of tissue damage [133,149]. It is also characterised
by a strong intrathecal antibody synthesis [148–151].
Pro-inflammatory cytokines are upregulated
within the inflammatory lesions, whereas anti-
inflammatory cytokines remain at normal levels
[146].

A first theory suggests that tissue destruction in
the chronic phase of CDE is related to the anti-viral
immune response [10]. Anti-CDV antibodies bind-
ing to their target cells were found to stimulate
neighbouring macrophages both in vivo and
in vitro, which could, at least in vitro, lead to the
destruction of nearby oligodendrocytes, affecting
them as bystander cells [141,142,152–154).

Secondly, there is also evidence for virus-
induced autoimmunity in canine distemper. Anti-
myelin antibodies have been found in serum and
CSF, as well as in inflammatory brain lesions
[150,155], and a cell-mediated response against
myelin basic protein (MBP) was found in a few
dogs experimentally infected with CDV [156].
These immunological parameters, however, do
not seem to correlate with the disease course [10]
and, at a pathological level, distemper seems to
bear little resemblance to EAE in dogs [157]. It
also seems uncertain to what extent these events
play an active role in the actual process of demye-
lination and whether an autoimmune disease
would continuously progress in the absence of vir-
al antigen [10]. With regard to the latter, interest-
ingly, it has been shown that MHC class II
expression remains upregulated in distemper

even though when the number of CDV positive
cells has strongly diminished [139].
A third theory postulates that the main factor

leading to the chronic phase of demyelination is
viral persistence [10]. Studies have shown that
CDV can persist in white matter areas outside
the demyelinating lesions [10,158]. Persistence of
CDV would, rather than being caused by a defect
in the virus itself, mostly be related to restricted
infection and non-cytolytic spread, as was also
postulated, in a slightly different way, for the
acute phase. [10,159–161]. It is suggested that the
persistent agent precipitates recurrent immune
reactions, even though the infectious load may
be extremely small and difficult to detect [10].
Another consideration could be the role of astro-
cytes, the primary target cells of CDV which read-
ily support viral production. It is becoming more
understood that astrocytes, instead of being
mere ‘brain glue’ [162], could play a pivotal
role in both normal CNS functioning and in dis-
ease states. Recently, a review [163] focused on
the possible role of astrocytes in a variety of dis-
ease states, including epilepsy, amyotrophic lateral
sclerosis (ALS) and stroke. Neither infections of
the CNS nor MS were mentioned in this review.
However, astrocytes undergo different alterations
in CDE, including loss of beta-2 adrenergic
receptors [164], which was also seen in MS
[165,166], and an upregulation of CD44 on their
cell membranes [167]. Astrocytes could play a
more primary, pivotal role, rather than just a con-
tributory one, as has occasionally been mentioned
[10,138], in the development of demyelination, dis-
rupting a balance of energy supply to other cell
types or perhaps causing an upset of the immune
system, thus triggering an auto-immune reaction
[168-172].

PHOCINE DISTEMPER VIRUS
In 1988, the previously unknown morbillivirus
PDV was responsible for a mass die-off amongst
harbour seals, reducing the seal population in
some regions by more than 50% [172–183] (Figure 2).
Morbilliviruses were not previously known to
infect aquatic mammals. By the end of the year
the epidemic was practically over and the virus
remained silent for more than 10 years, although
initial cases of infection continued to be reported
in European and also North American coastal
areas [184–192]. In 2002, a second epidemic
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occurred which largely followed the pattern of the
first one [193–196]. Both epidemics occurred in
northern areas, starting at the Danish island of
Anholt and subsequently spreading along the
whole northern European coastline, from the Wad-
den Sea to Norway, including the British Isles
[172,177,178,181,182,194–196] (Figure 7). Why
both epidemics started at Anholt and PDV was
not seen until 1988 is remarkable and still remains
unexplained. This possibly underlines the nature
and high potential of morbilliviruses to evolve
and infect new hosts [4,8] or could be due to infec-
tion following contact with another species, possi-
bly seals from arctic populations [172,181,194,196–
198]. Genetic studies have shown that PDV closely
resembles CDV but is more distant from MV and
RPV [1,199–211]. Clinical signs observed in PDV-
infected seals include hyperthermia, dyspnoea
and enteric symptoms such as diarrhoea. From
clinical observations of infected animals it has
become clear that PDV, like other members of
the genus, causes a neurological disorder with
fits, muscle twitching and an abnormal posture
[172,177,194].
There has only been one large necropsy report of

seals that died during these epidemics, a gross
full-body screening performed on seals that died
during the 1988 epidemic [11], and there have
occasionally been reports describing necropsies
performed on small numbers of stranded animals
in isolated events [186,187]. Infection of brain tis-

sue has been reported, characteristic of a non-sup-
purative demyelinating encephalitis with degeneration
and necrosis of neurons, focal gliosis, perivascular
cuffing and demyelination. Intracytoplasmatic and
intranuclear inclusions were found in many neu-
rons, astrocytes and ependymal cells. The other
necropsy findings consisted mainly of pulmonary
changes, characteristic of bronchointerstitial pneu-
monia, gastrointestinal lesions, lymphocytolysis
and lymphoid depletion [11,186,187].
Very little is known about the pathogenesis of

PDV infection and the nature of lesion develop-
ment, including demyelination. There has only
been one experimental study, in which seronega-
tive seals were infected with PDV [172,212]. These
animals developed clinical signs of distemper and
PDV antigen was detected in a range of tissues,
including the respiratory and gastrointestinal
tracts, CNS and lymphoid tissues [212].

CETACEAN MORBILLIVIRUS
Remarkably, the first evidence of a morbillivirus
infecting cetaceans also came in 1988, when six
harbour porpoises with distemper-like lesions
were found stranded on the coast of Northern Ire-
land [213]. At first, it was thought that this was the
result of cross-species infection because these ani-
mals were found near a large colony of morbilli-
virus-infected harbour seals [172]. Subsequently
however, harbour porpoises were also found
stranded on the Dutch, English and Scottish coast-

Figure 7. Map showing the different outbreaks of PDV. The names of the countries have been abbreviated: BE, Belgium; CA, Canada;

CZ, Czech Republic; DE, Germany; DK, Denmark; FR, France; GB, Great Britain; IE, Ireland; NL, The Netherlands; NO, Norway; PL,

Poland; SE, Sweden; USA, United States of America
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lines [214,215] (Figure 8). A morbillivirus was
indeed recovered from these porpoises and shown
to be a novel member of the genus, PMV [211,215–
217], making the initial theory of cross-species
infection less plausible. A few years later, in the
early nineties, a mass die-off started to occur with-
in populations of striped dolphins residing in the
Mediterranean Sea, starting along the Mediterra-
nean coast of Spain in 1990 and subsequently
spreading throughout other parts of the Mediter-
ranean over a period of 2 years before eventually
subsiding in 1992 [172,178,218–220] (Figure 2).
Molecular biological and antigenic studies of the
virus recovered from these animals revealed
another new morbillivirus, which was named
DMV. PMV and DMV are so closely related
(Figure 1) that they can be considered two strains
of the same viral species and thus are commonly
gathered under the name CeMV [172,211,215,
221–225]. Within the genus, PMV and DMV are
more closely related to PPRV than to the MV-
RPV or CDV–PDV branches [105,172,211,221].
After these initial cases of infection in the early
nineties, DMV and PDV have, retrospectively,
been held responsible for another large epidemic,
occurring alongside the eastern coast of the USA
between June 1987 and May 1988 [226–228], and
a smaller one in the Gulf of Mexico from mid-
1993 to mid-1994 [228,229]. Very few data are
available with regard to the exact clinical presenta-
tion of infected animals. Neurological and beha-

vioural changes were the only clinical features
seen in striped dolphins stranded on the Spanish
coast in 1990 [172,178]. Skin lesions and erosion
of buccal mucosa were common [178]. Tachycar-
dia, abnormal respiratory rates, weak sound emis-
sion and muscle tremors were also reported
[172,230]. Some dolphins repeatedly struck their
bodies against rocks or breakwaters, possibly due
to brain damage [172].
Most of our knowledge of CeMV-induced

pathology comes from full-body necropsies on ani-
mals which were found stranded. Lung lesions
characteristic of bronchointerstitial pneumonia
were seen, as well as gastrointestinal lesions, lym-
phocytolysis and lymphoid depletion [172,178,219,
220,226,227,231,232]. CNS lesions were characteris-
tic of a non-suppurative encephalitis, with degen-
eration and necrosis of cortical neurons [172,178,
218,231,232].White matter changes included astro-
gliosis and foci of malacia, containing syncytia
with two to six nuclei [232,233]. The finding of
demyelination was less prominent than in PDV.
Demyelination was found in two studies
[219,233], one being a large study mainly focusing
on neuropathology which notably described
inflammatory lesions which were subacute or
chronic in nature, but was not considered a promi-
nent feature in two other studies [218,231]. These
last studies were, however, performed on a much
smaller number of animals. Intracytoplasmatic
and intranuclear acidophilic inclusion bodies

Figure 8. Map showing the different outbreaks of CeMV. The names of the countries have been abbreviated: AL, Albania; BA, Bosnia-

Hercegovina; ES, Spain; FR, France; GB, Great Britain; GR, Greece; HR, Croatia; IE, Ireland; IT, Italia; MN, Republic of Montenegro; MX,

Mexico; NL, The Netherlands; TR, Turkey; USA, United States of America
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were common in degenerated and necrotic
neurons, glial cells and syncytia and tended to be
larger and more irregular than in PDV-infected
seals [172]. Large amounts of morbillivirus were
found in cortical neurons, astrocytes and microglia
[178]. Two studies [218,234] described encephalitis,
associated with the presence of inclusion bodies
and morbillivirus antigen in brain tissue, in the
absence of infection or viral antigen in other organ
tracts. This may indicate some sort of chronic form
of infection analogous to SSPE in humans [172],
but more studies are required to address this [172].

FINAL REMARKS
MS is the most common inflammatory demyelinat-
ing disease of the CNS, affecting about 2.5 million
people worldwide [13,20,57]. The disease has its
main onset in young to middle-aged adults
between their 20 and 40th years, with a female pre-
ponderance of 1.6:1 [20]. Although MS has been
studied since the late 19th century its precise
aetiology to this day remains elusive [20]. Current
theories postulate that the disease is an autoim-
mune disorder, in which an environmental, possi-
bly viral, trigger deranges the immune system in
susceptible individuals, eventually leading to
demyelination [20]. Histopathologically, the dis-
ease is characterised by focal demyelination and
diffuse astrogliosis [20].
In nearly 95% of all MS patients an extraordina-

rily high amount of intrathecally synthesised anti-
bodies is found in the CSF, often as oligoclonal
bands [20,235–237]. This finding, together with
its pathological similarities to most demyelinating
diseases of the CNS of known viral origin [17–19]
and its specific geographical distribution [20], led
to the theory that MS could be caused by a viral
agent. Migration studies suggest that a viral infec-
tion in the pre-puberty could cause the eventual
occurrence of the disease years later [20]. Given
particularly high anti-measles antibody titers
within the CSF [235–237], a morbilliform,
measles-like virus was considered a likely candi-
date [14,15]. However, to this day no virus has
been successfully recovered from the brain of MS
patients.
A few points are important when evaluating the

possibility of the involvement of a morbillivirus in
multiple sclerosis. Morbillivirus infections fre-
quently lead to demyelination of the CNS in a
wide variety of mammals. Demyelination has

long been known to occur in infections with terres-
trial morbilliviruses but, as demonstrated in the
previous sections, also occurs in infections with
their aquatic counterparts. In this respect it is
important to recognise that, even though at pre-
sent virtually all demyelinating diseases of man
and animals of known aetiology are of viral origin
[57], the ability of a virus to induce demyelination
is actually rather uncommon. In fact, many viruses
infecting the CNS, such as rabies virus, are not
capable of causing demyelination [57]. All morbil-
liviruses, at least MV, CDV and the aquatic morbil-
liviruses, possess specific capabilities to cause CNS
demyelination, with, more importantly, forms of
disease varying from acute, subacute to chronic
(Figure 9). Furthermore, the genus as a whole
has a wide host range, as most of its members,
and viruses seem to be capable of evolving and
shifting to new hosts quickly. As illustrated in
this article, the occurrence of specific virus-
induced CNS lesions, for example demyelination,
seems to be dependent upon a complex interplay
between both virus-bound and species-bound,
for example immunological factors. Examples of
the latter are manifold, a risk factor for SSPE being
below 2 years of age, MIBE solely occurring in
immunocompromised patients, and a virus as rin-
derpest for example even having strains of differ-
ent virulence and giving different disease
presentations in different hosts.
Taking these considerations together, it seems

possible that a morbillivirus, possibly a yet
unknown- or ancestral one (Figure 1), could play
a role in the pathogenesis of the human demyeli-
nating disease MS. Such a virus itself would not
even have to be present in the CNS anymore, trig-
gering a specific upset of the immune system even-
tually leading to disease: the hit-run hypothesis
[238]. It seems plausible to suspect that even a
virus causing devastating, acute symptoms in
one species could play another, subtler role in
another species, remaining subclinical, remissive
or disappearing after triggering an immunological
upset, according to the susceptibility of the species
and species-bound factors. Secondly, one should
also ask if it is plausible to suspect that the species
in which a virus is first discovered because of the
extreme nature of acute symptoms, is also likely to
be its natural host and main ‘reservoir’ of infection
or is itself the victim of a cross-species infection.
This emphasises the need to study demyelinating

G. J. SipsG. J. Sips et al.et al.

Copyright # 2007 John Wiley & Sons, Ltd. Rev. Med. Virol. (in press)
DOI: 10.1002/rmv



diseases in mammals other than humans with
regard to MS, even if their presentation or prog-
nosis in these mammals differs from MS in
humans.

With regard to the specific aetiopathogenesis of
the myelin destruction seen in morbillivirus infec-
tions, almost everything we know comes from stu-
dies on MV and CDV. The aquatic morbilliviruses
certainly deserve specific neuropathologic atten-
tion because, when compared to MV and CDV,
virtually nothing is known about the exact neuro-
pathology and neuropathogenesis of morbillivirus-
induced demyelination in aquatic mammals
whereas such knowledge could be of great value.

There seems to be no general consensus on the
exact mechanisms by which morbilliviruses such
as MV and CDV eventually elicit demyelination,
especially in such differing patterns as seen in
MV infection. Both viral and host factors seem to
be very important and different mechanisms,
such as autoimmune reactions and restrictive
infection, have been postulated (Table 1).
As reviewed here, our present knowledge of

morbillivirus neuropathogenesis raises challen-
ging questions. In MV-induced encephalitis it is
commonly difficult to demonstrate any virus.
When the encephalitis has developed usually no
virus can be discovered in ADEM or SSPE

Figure 9. CNS demyelination induced by morbilliviruses (A–D) and CNS demyelination in MS (E). White arrows mark areas of demye-

lination. All sections are stained with Luxol Fast Blue and Cresyl Violet. (A) Acute phase of demyelination in a CDV-infected dog (pons).

(B) Inflammatory demyelination in a CDV-infected dog 6 weeks post-infection. (C) Chronic phase of demyelination: demyelinated gliotic

plaque in a CDV-infected dog (cerebellum). (D) Demyelination in a PDV-infected harbour seal. (E) Demyelination in MS

Involvement of morbillivirusesInvolvement of morbilliviruses

Copyright # 2007 John Wiley & Sons, Ltd. Rev. Med. Virol. (in press)
DOI: 10.1002/rmv



[5,18,38,39,46,62]. If MS is caused by a virus trig-
gering a disease with prolonged incubation peri-
od, that is some sort of SSPE or combination of
ADEM and SSPE, the interesting thought arises
whether a virus causing MS should not possibly
be sought in healthy persons years prior to the
clinical manifestations of the disease in order to
equivocally recover the causative factor of the dis-
ease. However, when looking for analogies
between the neuropathology induced by viral
infections of known origin and MS-neuropathol-
ogy, it seems likely that viral ‘signatures’ can be
found, based on similarities between both, which
can provide more clues about the identity of a cau-
sative or triggering agent in MS. CDV raises
another interesting question: virus can be demon-
strated but is mostly present in the ‘wrong’ cells,
that is astrocytes [10,125,129–133]. Whereas one
would suspect a primary infection of oligodendro-
cytes when finding demyelination, only a small
subpopulation of oligodendrocytes is infected in
CDE. Furthermore, there seems to be no correla-
tion between the amount of virus and severity of
disease, especially in the chronic phase of the dis-
ease. From other examples, most strikingly HIV-
encephalopathy, it is known too that a virus can

infect cell types other than oligodendrocytes, in
case of the latter macrophages and microglia, but
yet cause demyelination [19,85,86]. The contribu-
tion of other cell types to the pathological pro-
cesses leading to demyelination could play a
substantial role and is certainly worth studying.
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Table 1. The occurrence of morbillivirus-induced demyelination in naturally infected
mammals and suggested pathogenetic mechanism(s)

Virus Naturally infected Demyelination Suggested pathogenetic
mammals mechanism(s)

MV Humans þ ADEM: Auto-immune
MIBE: ?
SSPE: Viral persistence;
Cell-mediated damage;
Lysing CSF antibodies.

RPV Large ruminants �
Neurovirulent in mice

PPRV Small ruminants �
Neurovirulent in mice

CDV Dogs þ Acute phase: Restricted infection
Chronic phase: Viral persistence;
Bystander damage;
Auto-immune

PDV Seals þ ?
CeMV Cetaceans þ ?
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