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ABSTRACT

Polyphenols are abundant micronutrients in our diet, and evidence
for their role in the prevention of degenerative diseases is emerging.
Bioavailability differs greatly from one polyphenol to another, so
that the most abundant polyphenols in our diet are not necessarily
those leading to the highest concentrations of active metabolites in
target tissues. Mean values for the maximal plasma concentration,
the time to reach the maximal plasma concentration, the area under
the plasma concentration-time curve, the elimination half-life,
and the relative urinary excretion were calculated for 18 major poly-
phenols. We used data from 97 studies that investigated the kinetics
and extent of polyphenol absorption among adults, after ingestion of
a single dose of polyphenol provided as pure compound, plant ex-
tract, or whole food/beverage. The metabolites present in blood,
resulting from digestive and hepatic activity, usually differ from the
native compounds. The nature of the known metabolites is described
when data are available. The plasma concentrations of total metab-
olites ranged from 0 to 4 umol/L with an intake of 50 mg aglycone
equivalents, and the relative urinary excretion ranged from 0.3% to
43% of the ingested dose, depending on the polyphenol. Gallic acid
and isoflavones are the most well-absorbed polyphenols, followed
by catechins, flavanones, and quercetin glucosides, but with differ-
ent kinetics. The least well-absorbed polyphenols are the proantho-
cyanidins, the galloylated tea catechins, and the anthocyanins. Data
are still too limited for assessment of hydroxycinnamic acids and
other polyphenols. These data may be useful for the design and
interpretation of intervention studies investigating the health effects
of polyphenols. Am J Clin Nutr 2005;81(suppl):230S—-42S.
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INTRODUCTION

Epidemiologic studies have clearly shown that diets rich in
plant foods protect humans against degenerative diseases such as
cancer and cardiovascular diseases. Plant foods contain fiber,
vitamins, phytosterols, sulfur compounds, carotenoids, and or-
ganic acids, which contribute to the health effects, but they also
contain a variety of polyphenols, which are increasingly re-
garded as effective protective agents.

Polyphenols represent a wide variety of compounds, which are
divided into several classes, ie, hydroxybenzoic acids, hydroxy-
cinnamic acids, anthocyanins, proanthocyanidins, flavonols, fla-
vones, flavanols, flavanones, isoflavones, stilbenes, and lignans.
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The chemical structures and the food contents of the various
polyphenols have been reviewed elsewhere (1). One of the main
objectives of bioavailability studies is to determine, among the
hundreds of dietary polyphenols, which are better absorbed and
which lead to the formation of active metabolites.

Many researchers have investigated the kinetics and extent of
polyphenol absorption by measuring plasma concentrations
and/or urinary excretion among adults after the ingestion of a
single dose of polyphenol, provided as pure compound, plant
extract, or whole food/beverage. We have reviewed 97 studies of
various classes of polyphenols, namely, anthocyanins, flavonols,
flavanones, flavanol monomers, proanthocyanidins, isofla-
vones, hydroxycinnamic acids, and hydroxybenzoic acids. We
have compiled the data from the most relevant studies, ie, those
using well-described polyphenol sources and accurate methods
of analysis, to calculate mean values for several bioavailability
measures, including the maximal plasma concentration (C,,,,,),
time to reach C,,,,, area under the plasma concentration-time
curve, elimination half-life, and relative urinary excretion. The
results clearly show wide variability in the bioavailability of the
different polyphenols.

ANTHOCYANINS

Anthocyanins are present in very large amounts in some diets.
Servings of 200 g of aubergine or black grapes can provide up to
1500 mg anthocyanins and servings of 100 g of berries up to 500
mg. Therefore, an intake of several hundred milligrams would
not be considered exceptional. The mean dietary intake in Fin-
land has been estimated to be 82 mg/d, with the main sources
being berries, red wine, juices, and the coloring agent E163 (M
Heinonen, personal communication, 2001).

The results of a literature survey on the bioavailability of
anthocyanins among humans are presented in Table 1. Single
doses of 150 mg to 2 g total anthocyanins were given to the
volunteers, generally in the form of berries, berry extracts, or
concentrates. After such intakes, concentrations of anthocyanins
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TABLE 1
Bioavailability studies of anthocyanins or anthocyanin-containing foods’

No. of Plasma
Source subjects Dose Toax Plasma  concentration T, urine (h)  Urinary excretion  Ref

h nmol/L h % of intake

Black currant juice 17 20 or 12 mg total anth./kg bw 0.75 32-107% 0.045-0.072 2
Black currant juice (330 mL) 10 1 g total anth. 1 3.5-51° 1-1.5 0.032-0.046" 3
Black currant juice (200 mL) 4 153 mg total anth. 2 0.02-0.05/5 h? 4
Black currant concentrate 8 3.58 mg total anth./kg bw 1.25-1.75° 115 (4-60%) <4 0.06-0.11/8 h? 5
Elderberry extract (12 g) 4 720 mg total anth. 0.077/4 h 6
Elderberry extract (12 g) 4 720 mg total anth. 1.1-1.2° 97 7
Elderberry concentrate 16 1.9 g total anth. 1-2° 0.035/6 h 8
Spray-dried elderberry juice 7 500 mg total anth. 347 0.01-0.04° 9
Freeze-dried blueberries 5 1.2 g total anth. 41 11-367 10
Lowbush blueberries (190 g) 6 690 mg total anth. 0.004/6 h 6
Red wine (300 mL) 6 218 mg total anth. 6 1.5-5.1/12 h 11
Red wine (500 mL) 6 68 mg malvidin 3-glc 0.83 1.4 <3 0.016/6 h 12
Red grape juice (500 mL) 6 117 mg malvidin 3-glc 2 2.8 0.019/6 h 12
Red fruit extract (1.6 g) 12 2.7 mg cyan 3-glc/kg bw 1 29 13
Strawberries 6 77.3 mg pelargonidin 3-glc 2-4 1.8/24 h 14

I'T, e time to C
2 Assuming average molecular weight of 465 g/mol for unit conversion.
? Depending on the anthocyanin considered in the mixture.

max>

measured in plasma were very low, on the order of 10—-50 nmol/
L.The mean time to reach C,,, was 1.5 h (range: 0.75—4 h) for
plasma and 2.5 h for urine. Most studies reported low relative
urinary excretions, ranging from 0.004% to 0.1% of the intake,
although Lapidot et al (11) and Felgines et al (14) measured
higher levels of anthocyanin excretion (up to 5%) after red wine
or strawberry consumption. The time course of absorption was
consistent with absorption in the stomach, as described for ani-
mals (15, 16). The most striking features of the survey were thus
that anthocyanins are very rapidly absorbed and eliminated and
that they are absorbed with poor efficiency.

Although anthocyanin bioavailability appears low, it could
have been underestimated, for 2 main reasons, ie, some important
metabolites might have been ignored or the methods used might
need to be optimized for the analysis of anthocyanin metabolites.
It is well known that different chemical forms of anthocyanins
are present in equilibrium, depending on the pH. In most studies,
analyses were performed with ultraviolet-visible light detection,
on the basis of complete conversion of all of the chemical forms
of anthocyanins into a colored flavylium cation with acidifica-
tion. However, it is possible that some forms existing at neutral
pH would not be converted into the flavylium form, because of
putative binding to or chemical reactions with other components
of the plasma or urine, for example. It would be very useful to
have labeled anthocyanins for identification of all of the metab-
olites generated from these polyphenols.

With our current knowledge, there seem to be important dif-
ferences in the metabolism of anthocyanins, compared with other
polyphenols. Whereas flavonoids are generally recovered in
plasma and urine as glucuronidated and/or sulfated derivatives,
with no or only trace amounts of native forms, unchanged gly-
cosides were the only metabolites identified for anthocyanins in
most studies. However, glucuronides and sulfates of anthocya-
nins were recently identified in human urine with HPLC-mass
spectrometry/mass spectrometry analyses (6, 14). In the study
conducted by Felgines et al (14), monoglucuronides accounted
for >80% of the total metabolites when analyses were performed

anth., anthocyanin; bw, body weight; glc, glucoside.

immediately after urine collection. The authors also showed that
all of the metabolites of the strawberry anthocyanins, except for
the native glucoside, were very unstable and were extensively
degraded when acidified urine samples were frozen for storage.
This probably explains why such metabolites were not observed
in previous studies. Therefore, it seems crucial to reconsider
anthocyanin bioavailability, with methods that allow preserva-
tion of all of the metabolites in frozen samples.

Other metabolites that have not yet been considered but could
contribute to the biological effects of anthocyanins are the me-
tabolites produced by the intestinal microflora. However, studies
performed in the 1970s showed that degradation of anthocyanins
by the microflora occurs to a much more limited extent than with
other flavonoids (17). Protocatechuic acid was identified as an
abundant metabolite of cyanidin-3-O-glucoside in rats, but it was
also formed in vitro with simple incubation of cyanidin with rat
plasma in the absence of colonic bacteria (18). Identification of
all of the microbial metabolites in humans should be reinvesti-
gated with pure anthocyanins and not only berry extracts, which
contain other polyphenols as well as anthocyanins.

FLAVONOLS

Flavonols, especially quercetin, have been extensively
studied, mainly because they are widely distributed in dietary
plants. However, their content in the diet is generally quite
low. The daily intake of flavonols has been estimated as only
20-35 mg/d (19-22).

Twenty years after Gugler et al (23, 24) failed to find quercetin
in plasma or urine from volunteers challenged with 4 g pure
aglycone, the team of Hollman et al (23, 24) showed that quer-
cetin was indeed absorbed in humans. They demonstrated that
glucosides of quercetin were more efficiently absorbed than
quercetin itself, whereas the rhamnoglucoside (rutin) was less
efficiently and less rapidly absorbed (Table 2). This difference
in absorption rates was confirmed by others (33, 34). When pure
compounds were given, the bioavailability of rutin was ~20%
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TABLE 2
Bioavailability studies of flavonols or flavanol-containing foods’

No. of Thax Plasma Urinary ~ Elimination
Source subjects Dose plasma concentration AUC excretion half-life  Ref

h wmol/L wmol - h/L % of intake h

Pure quercetin 6 4g <0.33 <1 23
Onions 9 ileostomized 89 mg quercetin eq 0.31/13h 24
Pure rutin 9 ileostomized 100 mg quercetin eq 0.07/13h 24
Pure quercetin 9 ileostomized 100 mg quercetin eq 0.12/13h 24
Fried onions 2 64 mg quercetin eq 2.9 0.65 16.8 25
Onions 9 68 mg quercetin eq 0.7 0.74 7.7 28.0 26
Apples 9 107 mg quercetin eq 2.5 0.3 35 23.0 26
Pure rutin 9 100 mg quercetin eq 9.3 0.3 33 26
Complete meal 10 87 mg quercetin eq 0.37at3h 27
Onions 5 186 mg quercetin eq 1.3-1.9 2.18 1.11 28
Onions 5 50 mg quercetin eq 2 0.83 29
Quercetin 4'-glucoside 9 150 mg <0.5 3.5 18.8 21.6 30
Pure rutin 9 190 mg 6 0.18 3.7 28.1 30
Quercetin 3-glucoside 9 156 mg 0.6 5 19.1 3.6 18.5 31
Quercetin 4'-glucoside 9 160 mg 0.45 4.5 17.5 3.1 17.7 31
Pure rutin 3 500 mg 4-7 0.13-0.73 32
Pure quercetin 16 8,20, 50 mg 2,27,49 0.14,0.22,0.29 1.74,2.92,3.77 17,17.7,15 33
Pure rutin 16 8, 20, 50 mg quercetineq 6.5,7.4,7.5 0.08,0.16,0.30 1.26, 2.10, 3.36 33
Onions 12 100 mg quercetin eq 0.68 7.6 32.1 6.4 10.9 34
Pure quercetin 4'-glucoside 12 100 mg quercetin eq 0.7 7.0 27.8 4.5 11.9 34
Buckwheat tea 12 200 mg quercetin eq 4.3 2.1 12.6 1.0 10.3 34
Pure rutin 12 200 mg quercetin eq 7 1.1 8.3 0.9 11.8 34
Apple cider (1.1 L) 6 1.6 mg quercetin eq 0.66-1 0.14 35
Pure quercetin 12 0.14 mg/kg bw 0.5 0.15-0.42 2.9-7 36

I'T e time to C s
that of quercetin glucosides, on the basis of area under the plasma
concentration-time curve values and relative urinary excretions
(30,34). The biochemical explanation for the better absorption of
quercetin glucosides has been discussed elsewhere (1). Itis clear
that, for quercetin, bioavailability differs among food sources,
depending on the type of glycosides they contain. For example,
onions, which contain glucosides, are better sources of bioavail-
able quercetin than are apples and tea, which contain rutin and
other glycosides.

The presence of intact glycosides of quercetin in plasma was
debated a few years ago, but it is now accepted that such com-
pounds are absent from plasma after nutritional doses (34, 37—
40). Quercetin is not present as an aglycone and occurs only in
conjugated forms. Generally, ~20—40% of quercetin is meth-
ylated in the 3'-position, yielding isorhamnetin (31, 34, 38). The
exact nature of the metabolites present in plasma after the inges-
tion of onions was determined by Day et al (38). They identified
quercetin-3-0-glucuronide, 3'-O-methylquercetin-3-O-glucu-
ronide, and quercetin-3'-O-sulfate as the major conjugates.

Some phenolic and aromatic acids can also be produced from
flavonols by the microflora. Quercetin degradation produces mainly
3,4-dihydroxyphenylacetic, 3-methoxy-4-hydroxyphenylacetic
(homovanillic acid), and 3-hydroxyphenylacetic acid (17, 41-43).
The total urinary excretion of microbial metabolites accounted for
as much as 50% of the ingested dose among volunteers challenged
with 75 mg rutin (44).

One characteristic feature of quercetin bioavailability is that
the elimination of quercetin metabolites is quite slow, with re-
ported half-lives ranging from 11 to 28 h. This could favor ac-
cumulation in plasma with repeated intakes. A few authors in-
vestigated the bioavailability of quercetin after several days or

AUC, area under the curve; eq, equivalents; bw, body weight.

weeks of supplementation. Baseline quercetin concentrations,
measured after overnight fasting, were generally ~50-80
nmol/L, and values were even lower when a low-polyphenol diet
was given to the volunteers before a test meal (45, 46). The
baseline concentration slightly increased (165 nmol/L) after
6-wk supplementation with 500 mg/d pure rutin (32). The in-
crease was more pronounced in 2 other studies; plasma concen-
trations reached 1.5 umol/L after 28 d of supplementation with
a high dose of quercetin (>1 g/d) (47) and 0.63 umol/L after
supplementation with 80 mg/d quercetin equivalents for 1 wk
(37). It should be noted that very high interindividual variability
was observed in the latter study and in others (27, 34, 37). Some
individuals could be better absorbers than others, possibly be-
cause of particular polymorphisms for intestinal enzymes or
transporters. Quantitative data are still lacking for other fla-
vonols and flavones.

FLAVANONES

Flavanones represent a small group of compounds, including
glycosides of hesperetin present in oranges and glycosides of
naringenin present in grapefruit. The bioavailability of the gly-
cosides of eriodictyol, present in lemons, has never been studied
inhumans. The C,,, values for flavanone metabolites were mea-
sured ~5 h after the ingestion of citrus fruits (Table 3). This is
the time required for hydrolysis of the rhamnoglycosides hes-
peridin, naringin, and narirutin by the microflora, before absorp-
tion of the released aglycones in the colon. Aglycones are ab-
sorbed more rapidly; Bugianesi et al (50) showed that C,,, was
reached as early as 2 h after the ingestion of tomato paste, which
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TABLE 3
Bioavailability studies of flavanones or flavanone-containing foods’

No. of Plasma
Source subjects Dose Tinax concentration AUC Urinary excretion  Elimination half-life ~ Ref

h wmol/L wmol - h/L % of intake h

Orange juice 5 110 or 220 mg eq hesperetin ~ 5.4-5.8 0.46-1.28 4.19-9.28 4.1-6.4 48
Orange juice 5 22.6 or 45 mg eq naringenin ~ 4.6-5 0.06-0.2 0.43-1.29 7.1-7.8 48
Orange juice 8 126 mg eq hesperetin 54 22 10.3 5.3 2.2 49
Orange juice 8 23 mg eq naringenin 5.5 0.64 2.6 1.1 1.3 49
Grapefruit juice 5 199 mg eq naringenin 4.8 5.99 27.7 30.2 2.2 49
Tomato paste 5 3.8 mg naringenin 2 0.12 50
Pure compound 6 500 mg pure naringin 4.0 51
Pure compound 1 500 mg pure naringin 4.8 52
Pure compound 1 500 mg pure hesperidin 3.0 52
Grapefruit juice 4 325 mg eq naringenin 6.8 52
Orange juice 4 44 mg eq hesperetin 24.4 52
Grapefruit juice 6 7.2 mg naringin/kg bw 8.9 2.6-2.9 53
Grapefruit juice 2 214 mg naringin/d for 1 wk 14d 54

"' T e time to C,,.; AUC, area under the curve; eq, equivalents; bw, body weight.

contains naringenin aglycone. However, natural foods rarely
contain significant amounts of flavanones in the aglycone form.

Plasma metabolites of flavanones have not yet been identified.
Monoglucuronides of hesperetin were shown to be the major
forms present in plasma after ingestion of orange juice, but the
positions of glucuronidation are still not known (48). Microbial
metabolites such as p-hydroxyphenylpropionic acid, p-coumaric
acid, p-hydroxybenzoic acid, and phenylpropionic acid were
produced with in vitro incubation of naringenin with human
microflora (17,55, 56). They were also detected in rat urine (57).
The same types of microbial metabolites were detected for hes-
peretin (58, 59). Therefore, microbial metabolites may also be
present in human plasma.

The total urinary excretion of conjugated flavanones ac-
counted for 8.6% of the intake for hesperidin and 8.8% for nar-
ingin (Table 3). Plasma concentrations reached 1.3-2.2 pmol/L
hesperetin metabolites with an intake of 130-220 mg given as
orange juice (48, 49) and up to 6 wmol/L naringenin metabolites
with 200 mg ingested as grapefruit juice (49). However, data are
still scarce, with only 3 studies having investigated the bioavail-
ability of flavanones in plasma.

CATECHINS

The daily intake of catechin and proanthocyanidin dimers and
trimers has been estimated to be 18-50 mg/d, with the main
sources being tea, chocolate, apples, pears, grapes, and red wine
(60, 61). Although they are presentin many fruits and inred wine,
the bioavailability of catechins has been studied mainly after
ingestion of cocoa or tea (Table 4).

Bioavailability differs markedly among catechins. By giving
pure catechins individually, van Amelsvoort et al (78) demon-
strated that galloylation of catechins reduces their absorption.
They found that only epigallocatechin was methylated and that
4'-0-methyl-epigallocatechin accounted for 30—40% of the total
metabolites of epigallocatechin. In another study, the 4'-O-
methyl-epigallocatechin concentration was 5 times higher than
that of epigallocatechin in plasma and 3 times higher than that in
urine (84). Meng et al (74) recently showed that epigallocatechin
gallate (EGCG) was also methylated into 4',4"-di-O-methyl-
EGCG. The concentration of this metabolite was ~15% that of

EGCG in human plasma. Catechin was also methylated but pref-
erentially in the 3'-position (68). Only unchanged catechins were
measured in most studies, whereas the methylated metabolites
were not analyzed. Therefore, the mean bioavailability parame-
ters calculated in this review for catechins are probably under-
estimated.

EGCG is the only known polyphenol present in plasma in large
proportion (77-90%) in a free form (73-76). The other catechins are
highly conjugated with glucuronic acid and/or sulfate groups. The
exact nature of the major circulating metabolites of epicatechin has
been elucidated, ie, epicatechin-3'-O-glucuronide, 4'-O-methyl-
epicatechin-3'-O-glucuronide, 4'-O-methylepicatechin-5- or 7-O-
glucuronide, and the aglycones epicatechin and 4'-O-methyle-
picatechin (89).

Microbial metabolites, namely, 5-(3',4',5"-trihydroxyphenyl)
valerolactone, 5-(3',4'-dihydroxyphenyl)valerolactone, and
5-(3',5'-dihydroxyphenyl)valerolactone, mostly in conjugated
forms, were also identified in plasma and urine of volunteers
after ingestion of green tea (74). These metabolites accounted
for 6-39% of the ingested epigallocatechin and epicatechin,
8-25 times the levels measured for the unchanged compounds
(90). Because they appear later than catechins in plasma and
have long half-lives, these compounds could prolong the actions
of catechins (75). They probably exert some interesting antiox-
idant activity, because of their di-/trihydroxyphenyl groups.

Catechins are rapidly eliminated. Galloylated catechins were
never recovered in urine (75, 76, 78). This is explained not by
degalloylation, which has been shown to be a minor process in
humans, but rather by preferential excretion of these compounds
inbile (78). Extensive biliary excretion of EGCG was previously
reported in rats (91).

PROANTHOCYANIDINS

Because of the lack of accurate data on the proanthocyanidin
contents of foods, we are not yet able to provide a good estimation
of the mean daily intake of these compounds. However, nearly
one-half of 88 tested foods derived from plants were found to be
dietary sources of proanthocyanidins, which suggests that these
are among the most abundant polyphenols in our diet (92).
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TABLE 4
Bioavailability studies of flavanols or flavanol-containing foods’
No. of
Source subjects Dose Toax Plasma concentration AUC Urinary excretion Elimination half-life Ref
h wmol/L wmol - h/L % of intake h
Cocoa beverage 5 323 mg catechins 2 59EC + 0.16 62
catechins
Chocolate (80 g) 10 137 mg EC 2 0.26 63
Cocoa 6 1.53 mg/kg bw 2 1-1.5 1.7-3 64
Cocoa 5 220 mg EC 2 4.92 25.3 65
Chocolate 5 220 mg EC 2 4.77 29.8 65
Chocolate 20 46, 92, 138 mg 2 0.13, 0.26, 0.36 66
EC
Chocolate (40, 80 g) 8 82, 164 mg EC 2-2.6 0.38,0.7 1.53,3.7 1.9-2.3 67
Red wine (120 mL) 9 35 mg catechin 1.5 0.091 0.36 3.1 68
Red wine (120 mL) 9 35 mg catechin 1.44 0.077 0.31 3.2 69
Red wine (120 mL) 9 35 mg catechin 3-10 70
Pure catechin 12 0.36 mg/kg bw 0.5 0.14-0.49 1.2-3 36
Pure catechin 3 2g 2-3 2.8-5.9 22-37 55.0 71
Pure catechin 6 051,2¢g 1.4-2 2,3.8,7.8 4.5,9.7,20.1 23.6-28.2 1-1.3 72
Pure EGCG 6 X 8 50,100, 200, 400, 1.3-22  0.28,0.39,0.72, 1.36, 0.9,2.6,2.7,5.5, 1.94.6 73
800, 1600 mg 2.33, 7.4 EGCG 83,224
Pure EGCG 4 2 mg/kg bw 2 0.097 EGCG + 0.018 0.52 EGCG + 0.1 2.5EGCG, 284", 74
4',4"diMe EGCG 0.1 diMe EGCG 4"diMe EGCG
Pure EGCG 8 2 mg/kg bw 1.6 0.075 EGCG 0.47 3.7 75
Pure EGCG 4 X5 200,400, 600, 1.8-4 0.16,0.24,0.37,0.96 0.8, 1.3,3.7, 6.1 1.9-3.1 76
800 mg EGCG
Polyphenon E 4 X5 200, 400, 600, 2441 0.16,0.27,0.36,0.82 0.8,1.9,2.9,5.9 1.9-3 76
800 mg EGCG
Green tea powder 4 105 mg EGCG 2 0.14-0.31 EGCG 77
Pure EGCG 10 688 mg 2.9 1.3 EGCG 12.1 <0.02 39 78
Pure EGCG 10 459 mg 1.7 SEGC + 1.9 Me 20.1 EGC+ 98EC+38Me 1.7EGC,2.5Me
EGC 12.6 Me EGC EGC EGC
Pure EC gallate 10 663 mg 4 3.1 EC gallate 39.9 <0.02 6.9
Green tea extract 3 225,375, 525 mg 0.66, 4.3, 4.4 EGCG 79
EGCG at1.5h
7.5,12.5,17.5 mg 0.03, 0.14, 0.25 EGC
EGC at1.5h
Green tea extracts 8 2.8 mg EGCG/kg 1.6 0.17 EGCG 1.11 Trace amount 3.4 EGCG 80
bw
2.2 mg EGC/kg 1.3 0.73 EGC + 5.05 Me 3.09 33EGC + 123 1.7 EGC
bw EGC 4'-Me EGC
0.64 mg EC/kg 1.3 0.43 EC 1.82 8.9 EC 2.0 EC
bw
Green tea extract 4 88 mg EGCG 024 EGCGat 1 h 81
82 mg EGC 046 EGCat1h 2.0 total
catechins
32 mg EC 021 ECatlh
Green tea extract 6 109.5, 219, 328 1.6;2.4;2.7 0.26,0.71, 0.70 1.96, 4.85, 5.37 5.5,5.0,49 82
mg EGCG EGCG
102,204,306 mg 1.4;1.8;1.3 0.48,1.66, L8 EGC 2.02,8.14, 10.72 2.7,2.8,2.5
EGC
37.5,75,112.5 1.4;1.8;1.8 0.19,0.65,0.65 EC  0.96, 3.46,4.13 5.7,34,32
mg EC
Polyphenon 5 164 mg total 0.56 total catechins at 83
catechins 3h
100 mg EGCG 026 EGCG at3h
Green tea extracts 12 0.93 g total 2.3 0.55 total catechins 2.22 4.8 84
catechins
Green tea extracts 4 1.64 mg EGC/kg 0.5-2 0.8-1.2 EGC + 1.0EGC;444'Me 85
bw 3.8-6.9 4' MeEGC EGC
Green tea 21 640 mg total 1.5 1.8 total catechins 86
catechins

Continues
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TABLE 4
Continued
No. of

Source subjects Dose T,a.x Plasma concentration AUC Urinary excretion Elimination half-life Ref

Green tea 18 1.04 g total catechins/  0.5-2 1.0 total catechins 4.2 EGC, 6.5 EC 87
dfor3d

Black tea 12 0.3 g total catechins 2.2 0.17 total catechins 0.53 6.9 83

Black tea + milk 12 0.3 g total catechins 2 0.18 total catechins 0.60 8.6 83

Black tea 15 400 mg total 0.02 EGCG, 0.14 0.14 EGCG, 3.7 88
catechins/4 times EGC EGC

Black tea 21 140 mg total 1.5 0.34 total catechins 85
catechins

Black tea 18 400 mg total 0.3 total catechins 2.5 EGC, 6.5 EC 86
catechins/d for 3 d

I'T, a time to C,. : AUC, area under the curve; bw, body weight; EC, epicatechin; EGC, epigallo catechin; Me, methyl.

Polymeric proanthocyanidins are not absorbed as such. The
detection of proanthocyanidin dimers B1 and B2 in human
plasma was reported in only 2 studies (62, 93) (Table 5). The
absorption of these dimers was minor, ~100-fold lower than that
of the flavanol monomers in the study by Holt et al (62). In vitro
and animal studies confirmed that polymerization greatly im-
pairs intestinal absorption (94-96).

However, health effects of proanthocyanidins may not require
efficient absorption through the gut. Indeed, these compounds
may have direct effects on the intestinal mucosa and protect it
against oxidative stress or the actions of carcinogens. In addition,
the consumption of proanthocyanidin-rich foods, such as cocoa,
red wine, or grape seed extracts, has been shown to increase the
plasma antioxidant capacity, to have positive effects on vascular
function, and to reduce platelet activity in humans (97). These
procyanidin-rich sources always contain 5-25% monomers or
other polyphenols, which leaves doubts about whether proantho-
cyanidins are actually the active compounds in these sources. If
they are, then they may have effects through interactions with
other components, such as lipids or iron, in the gut.

Biological effects may be attributable not to direct actions of
proanthocyanidins themselves but to actions of some of their
metabolites that can be more readily absorbed. On the basis of in
vitro experiments, Spencer et al (98) suggested that polymers
could be degraded into monomers during their transit in the
stomach. However, Rios et al (99) clearly demonstrated that this
does not occur in humans, probably because the food bolus has a
buffering effect, making the acidic conditions milder than re-
quired for proanthocyanidin hydrolysis.

Proanthocyanidins are degraded into various aromatic acids by
the microflora. The incubation of purified, '“C-labeled, proantho-
cyanidin oligomers with human colonic microflora led to the for-
mation of m-hydroxyphenylpropionic acid, m-hydroxypheny-
lacetic acid, and their p-hydroxy isomers, m-hydroxyphenylvaleric
acid, phenylpropionic acid, phenylacetic acid, and benzoic acid

(100). Some of these compounds, namely, m-hydroxyphenyl-
propionic acid and m-hydroxyphenylacetic acid, as well as
m-hydroxybenzoic acid, were shown to increase in human urine
after consumption of procyanidin-rich chocolate (101). However,
the microbial metabolism of proanthocyanidins has never been stud-
ied in humans after consumption of purified proanthocyanidin poly-
mers. By feeding rats with purified catechin, dimer B3, trimer C2, or
procyanidin polymers, Gonthier et al (102) showed that the extent of
degradation into aromatic acids decreased as the degree of polymer-
ization increased; it was 21 times lower for polymers than for the
catechin monomer, probably because of the antimicrobial properties
and protein-binding capacity frequently described for proanthocya-
nidins. Therefore, the quantitative importance of the degradation of
proanthocyanidins into microbial metabolites must be further eval-
uated in humans.

ISOFLAVONES

Isoflavones are provided only by soybean-derived products.
They can be present as aglycones or glycosides, depending on the
soy preparation. Some authors investigated the differences in
bioavailability between aglycones and glycosides by using pure
molecules. Contradictory results have been obtained (Table 6).
Setchell et al (112) found greater bioavailability of glucosides, as
measured from the areas under the plasma concentration-time
curves. Izumi et al (110) found greater bioavailability of agly-
cones, on the basis of C,,,, but they did not measure isoflavone
concentrations between 6 and 24 h, whereas Setchell et al (112)
reported that the mean time to reach C,,,, was prolonged to 9 h
after glycoside ingestion. Two other studies found no significant
differences in the absorption efficiency for aglycones and gly-
cosides (117, 118).

In contrast, equol production was significantly higher after
ingestion of daidzin than after ingestion of daidzein (112, 117).
Equol is a bacterial metabolite that has been shown to be more

TABLE 5

Bioavailability studies of proanthocyanidins or proanthocyanidin-containing foods’

Source No. of subjects Dose Thax Plasma concentration Ref
h wmol/L

Cocoa beverage 5 256 mg dimers 2 0.041 B2 62

Grapeseed extract 4 18 mg procyanidin B1 0.011 B1 93

P—
Ty ime 10 .
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TABLE 6
Bioavailability studies of isoflavones or isoflavone-containing foods’
No. of Plasma Elimination
Source subjects Dose Toax concentration AUC Urinary excretion half-life Ref
h wmol/L wumol - h/L % of intake h
Soybean milk 12 24.7,45.9,70.7 mg Da 0.79, 1.22,2.24 19.8,23.7, 20.8 103
at6.5h
19.3, 36.2, 55.7 mg Ge 0.53, 1.10, 2.15 5.3,11.0, 10.0
at6.5h
Tofu or texturized 7 0.34-0.41 mg Da/kg bw 144at6.5h 49.0 104
vegetable proteins 0.48-0.56 mg Ge/kg bw 1.33at6.5h 13-16
Soybean flour in cow 6 0.67 mg Da/kg bw 74 3.14 62.0 4.7 105
milk 0.97 mg Ge/kg bw 8.4 4.09 22.0 5.7
Baked soybean powder 7 26.1 mg Da 8.0 1.56 35.8 Da + 7 equal 5.8 106
30.2 mg Ge 8.0 2.44 17.6 Ge 8.4
Soymilk 14 0.49 mg Da/kg bw l.14at6h 48.6 107
0.59 mg Ge/kg bw 1.74at6 h 27.8
0.10 mg Gly/kg bw 021 at6h 55.3
Soygerm 14 0.55 mg Da/’kg bw 1.40at6 h 43.8 107
0.15 mg Ge/kg bw 049at6h 29.7
0.50 mg Gly/kg bw 0.79at6 h 54.5
Cooked soybeans 10 20 mg Da 45.0 108
24 mg Ge 13.0
Texturized vegetable 10 28 mg Da 51.0
protein 32 mg Ge 13.0
Tofu 5 37 mg Da 50.0
43 mg Ge 16.0
Tempeh 4 22 mg Da 38.0
30 mg Ge 9.0
Soy beverage 12 0.6 mg Da/kg bw 26.8 109
1 mg Ge/kg bw 6.81
0.1 mg Gly/kg bw 19.0
Soybean extracts 8 15.7,t0 233.7 mg Da 2,4 0.77, 16.6 110
13,210.6 mg Ge 2,4 1.04,21.2
20.8, 333.1 mg daidzin 4,4 0.17, 3.66
25.9, 388.8 mg genistin 4,6 0.35,2.56
Soy beverage 12 0.6 mg Da/kg bw 5.5 0.3 2.3 34 111
1 mg Ge/kg bw 44 0.65 8.7 7.9
Pure compounds 6 50 mg Da 6.6 0.76 11.6 9.3 112
4 50 mg daidzin 9 1.55 17.8 4.6
[§ 50 mg Ge 52 1.26 16.8 6.8
3 50 mg genistin 9.3 1.22 18.3 7.0
1 25 mg Gly 4-6 0.72 2.5 8.9
Soy isolates 30 0.5-7.8mg Da/kg bw 0.6-16.9 14-53 Da 113
1-16 mg Ge/kg bw 0.9-27 4-18 Ge
Soy extract 24 0.28-8.4 mg Da/kg bw 2.5-11 1.7-9.0 14.1-134.8 2642 114
2,4, 8, 16 mg Ge/kg bw 3-9.5 3.4-254 35.4-337.9 9.5-14
Soy nuts 10 6.6, 13.2,26.4 mg Da 58,64,60 04,0.84,1.65 5.72,10.1,18.1 63,54, 44 8.7,79,75 115
9.8,19.6,39.2 mg Ge 49,4.0,60 0.59,1.22,221 10.1,17.3,31.2  252,13.4,15.8 10.8,10.0,9.6
13C-labeled 16 0.4, 0.8 mg Da/kg bw 0.31,0.71 4.0,8.7 29.5,25.6 8.2,72 116
compounds 0.4, 0.8 mg Ge/kg bw 0.55,0.87 6.7,9.8 8.9,8.3 75,74
Pure aglycones 15 16 mg Da 5.0 0.53 6.2 Da + 7 equol 117
13.8 mg Ge 42 0.53 8.9
Pure glycosides 12.5 mg Da eq 4.0 0.40 8.3 Da + 9 equol
17.2 mg Ge eq 5.3 0.57 8.3

T

estrogenic than its precursor daidzein in many in vitro studies and
in animal models (119). There is great interindividual variability
in the capacity to produce equol, and only 30-40% of the Western
population are “equol producers.” Equol producers may gain
more benefits from soy consumption than do nonproducers (119,
120). Therefore, it would be interesting to find a way to make
nonproducers become producers. To date, no clear correlations
between dietary habits or microflora composition and the capac-
ity to produce equol have been reported. It would be interesting

max> time to C .+ AUC, area under the curve; bw, body weight; Da, daidzein; Ge, genistein; Gly, glycitein; eq, equivalents.

to separate volunteers into equol producers and nonproducers in
future intervention studies designed to investigate the effects of
soy isoflavones. C,,,, values for equol were measured 12-24 h
after isoflavone ingestion (112, 117).

It has long been thought that the greater urinary excretion of
daidzein reflects greater bioavailability of this isoflavone, com-
pared with genistein (103). The explanation is that a greater
fraction of genistein is eliminated in bile, as observed in rats
(121). Plasma kinetic curves often showed a first peak followed
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TABLE 7
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Bioavailability studies of hydroxycinnamic acids or hydroxycinnamic acid-containing foods’

Source No. of subjects Dose T rax Plasma concentration Urinary excretion Ref
h nmol/L % of intake
Coffee (200 mL) 10 96 mg chlorogenic acid 1 505 caffeic acid 135
Red wine (100, 200, 300 mL) 5 0.9-1.8-2.7 mg caffeic acid 1 6.6-18-27 136
Red wine (200 mL) 10 1.8 mg caffeic acid 0.5-1 37-60 137
Pure compound 7 ileostomized 1 g chlorogenic acid 0.3 138
Pure compound 7 ileostomized 500 mg caffeic acid 10.7 138
Coffee 5 898 mg eq chlorogenic acid/3 times 5.9 139
Artichoke extract 10 124 mg eq chlorogenic acid/3 times 1243 ferulic acid 5.6° 140
Red wine 12 55 g caffeic acid/kg bw 2 84 141
Apple cider (1.1 L) 6 15 mg total hydroxycinnamic acids <2 430 35
Breakfast cereals 6 260 mg ferulic acid 1-3 150-210 ferulic acid 3.1 142
Tomatoes 5 30 mg ferulic acid 11-25 143
Beer (4 L) 5 9.4 mg ferulic acid 61.7 144
I T a0 time to C,.; €q, equivalents; bw, body weight.

2 Ferulic + isoferulic + dihydroferulic + vanillic acids.

~3 h later by a second peak, reflecting enterohepatic cycling
(112,117). By using '*C-labeled daidzein and genistein, Setchell
et al (116) recently showed that the systemic bioavailability and
Cnax Were significantly higher for genistein than for daidzein.
The limited data for glycitein indicate greater bioavailability than
for the other isoflavones (107, 114).

The nature of isoflavone metabolites was the same after gly-
coside or aglycone ingestion. Glycosides are hydrolyzed before
absorption and are not recovered as such in plasma (122). Agly-
cones have been recovered in small proportions, generally <5%
of the total metabolites (111-113, 123). The main metabolites are
7-0-glucuronides and 4'-O-glucuronides, with small proportions
of sulfate esters (111, 123, 124). Additional metabolites have been
identified in human plasma or urine, including dihydrodaidzein,
dihydrogenistein, dihydroequol, O-desmethylangolensin, and
6-hydroxy-O-desmethylangolensin (125-127).

Elimination of isoflavones is quite slow, with half-life values
of 6-8 h (Table 6). After ingestion of daidzein or genistein at 0.4
or 0.8 mg/kg body weight, baseline concentrations of isoflavones
in plasma were regained only after ~48 h (116). Plasma concen-
trations should therefore increase with repeated ingestion of soy
products. However, Lu et al (128) reported that relative urinary
excretion of isoflavones and elimination half-lives progressively
decreased during 4 wk of daily soymilk ingestion. Lampe et al
(129) did not observe any effect on urinary excretion of 1-mo
supplementation with isoflavones.

Another point worth noting is the evidence that high concen-
trations of isoflavones can be found in breast tissue of premeno-
pausal women and in prostate glands of men (130—-132). These
are the only available data on polyphenol concentrations in tis-
sues.

HYDROXYCINNAMIC ACIDS

Intake of chlorogenic acid varies widely but may be very high,
up to 800 mg/d among coffee drinkers (133, 134). Nevertheless,
very few studies have addressed the bioavailability of this hy-
droxycinnamic acid, in comparison with other polyphenols (Ta-
ble 7).

Olthof et al (138) showed that the esterification of caffeic acid,
asinchlorogenic acid, markedly reduced its absorption. This was

also observed in rats (145, 146). In fact, the absorption of chlo-
rogenic acid occurs mainly in the colon, after hydrolysis by
microbial esterases. It is not clear whether chlorogenic acid is
present, as such or in a conjugated form, in human plasma.
Nardini et al (135) found only caffeic acid in plasma after the
ingestion of coffee. We observed, however, that the preparation
of B-glucuronidase from Helix pomatia that is generally used to
hydrolyze samples also contains esterases that are able to degrade
chlorogenic acid into caffeic acid. Therefore, the possibility that
chlorogenic acid is present in plasma but is hydrolyzed during
sample treatment cannot be excluded. Intact chlorogenic acid has
been detected at low concentrations in nonhydrolyzed urine sam-
ples (138, 147). Metabolites other than caffeic acid have been
identified after ingestion of chlorogenic or caffeic acid, namely,
ferulic acid, isoferulic acid, dihydroferulic acid, vanillic acid,
3,4-dihydroxyphenylpropionic acid, 3-hydroxyhippuric acid,
and hippuric acid (139, 140, 147). Their quantitative importance
remains to be investigated.

Ferulic acid is another abundant hydroxycinnamic acid. When
present in free form in tomatoes or beer, it is efficiently absorbed
(143, 144). However, ferulic acid is also the main polyphenol
present in cereals, in which it is esterified to the arabinoxylans of
the grain cell walls. This binding has been reported to hamper the
absorption of ferulic acid in rats (148, 149). In humans, Kern et
al (142) measured the urinary excretion and plasma concentra-
tions of ferulic acid metabolites after ingestion of breakfast ce-
reals. They deduced from the kinetic data that absorption of
ferulic acid from cereals takes place mainly in the small intestine,
from the soluble fraction present in cereals. Only a minor amount
of ferulic acid linked to arabinoxylans was absorbed after hydro-
lysis in the large intestine.

HYDROXYBENZOIC ACIDS

Very little is known about the absorption and metabolism of
hydroxybenzoic acids (150). Their limited distribution in food
has resulted in limited interest by nutritionists. However, the few
studies addressing the bioavailability of gallic acid in humans
revealed that this compound is extremely well absorbed, com-
pared with other polyphenols (Table 8). Plasma concentrations
of free and glucuronidated forms of gallic acid and its main
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TABLE 8
Bioavailability studies of gallic acid or gallic acid-containing foods’
No. of Urinary Elimination
Source subjects Dose Trnax Plasma concentration AUC excretion half-life Ref
h pmol/L pmol h/L % of intake h
Pure compound 1 50 mg GA 1.8 GA + 2.3 4-MeGA 37.1 151
Pure compound 10 50 mg GA 1.3-1.5 1.8 GA + 2.8 4-MeGA 4.3 GA + 9.6 MeGA 36.4 1.2-1.5 152
Assam black tea 10 50 mg GA 1.4-1.5 2.1 GA + 2.6 4-MeGA 4.5 GA + 9.0 MeGA 39.6 1.1-1.3 152
Red wine (300 mL) 2 4 mg GA 0.22 GA + 1.1 4-MeGA 153
+ 0.25 3-MeGA
Red wine 12 47ug GA/kg bw 2 0.18 4-MeGA 141
I'T o time to C. : AUC, area under the curve; GA, gallic acid; MeGA, methylgallic acid.

metabolite 4-O-methylgallic acid reached 4 pwmol/L after inges-
tion of 50 mg pure gallic acid. Such intake is not inconceivable,
because red wine usually contains 10—60 mg/L gallic acid. How-
ever, gallic acid exists in different forms in fruits, nuts, tea, and
red wine, ie, the free form, esterified to glucose (as in hydrolyz-
able tannins), or esterified to catechins or proanthocyanidins (92,
154). It would be interesting to compare the bioavailability of the
different forms of gallic acid.

COMPARATIVE BIOAVAILABILITY OF
POLYPHENOLS

Mean values for C,,,,, time to reach C, ., area under the
plasma concentration-time curve, elimination half-life, and rel-
ative urinary excretion (related to the ingested dose) were cal-
culated for the different polyphenols (Table 9), on the basis of
the data compiled in Tables 1-8. Only data from studies using a
single dose of a well-characterized polyphenol source were taken
into account. To facilitate comparisons between polyphenols,

TABLE 9
Compilation of pharmacokinetic data from 97 bioavailability studies’

data were converted to correspond to the same supply of poly-
phenols, a single 50-mg dose of aglycone equivalent. For this, we
assumed that the bioavailability parameters increase linearly
with the dose, which has been demonstrated in humans only for
EGCG (73). When several doses were investigated in the same
study, only a mean value for the whole study was considered.
The most striking result of this survey was that gallic acid is far
better absorbed than the other polyphenols. The C,,, values for
its metabolites reached 4 wmol/L with a 50-mg intake, and the
relative urinary excretion was 38%. Next are isoflavones, which
are the most well-absorbed flavonoids, with C_,,, values of ~2
mmol/L after a 50-mg intake and mean relative urinary excretions
of 42% for daidzin and 15.6% for genistin. Proanthocyanidins
and anthocyanins are very poorly absorbed but, in the case of
anthocyanins, all of the metabolites might not have been identi-
fied, resulting in underestimation of their bioavailability. Values
for catechins are certainly underestimated, because methylated
metabolites were not taken into account in some studies. Data are

Toax Clax AUC Urinary excretion Elimination half-life
Mean Range Mean Range Mean Range Mean Range Mean Range
h wmol/L wmol h/L % of intake h

Daidzin 63+0.6 4090 192+025 036-3.14 214*+65 27-38.6 423+3.0 214620 53*£08 34-8.0
Daidzein 49+1.0 3.0-6.6 157+052 0.76-3.00 122%+29 7.5-174 27.5 85+08 7.7-93
Genistin 65106 4493 184+027 046404 237*£67 62451 156=*138 6.8-29.7 7.8*0.7 5.7-10.1
Genistein 41+£06 3.0-52 256*+1.00 126450 19.8+6.5 104-32.2 8.6 7.1+03 6.8-75
Glycitin 5.0 1.88 £0.38  1.50-2.26 7.9 429 £12.0 19.0-55.3 8.9
Hesperidin 55+0.1 54-58 046+0.21 021-0.87 27+0.7 1941 8.6 £4.0 3-24.4 22
Naringin 50+0.2 4.6-55 050+033 0.13-150 3.7*£15 09-7.0 8.8 £3.17 1.1-30.2 2.1 £04 1.3-27
Quercetin glucosides 1.1 £03 0529 146+x045 051-380 9.8*19 57-160 25*+12 031-64 179+22 10.9-28.0
Rutin 65107 4393 020+x006 0.09-052 29*£09 1.6-55 07+03 0.07-1.0 199+81 11.8-28.1
(Epi)catechin 1.8+0.1 05-25 040=£0.09 0.09-1.10 1.1+03 0.5-20 185=%5.7 2.1-550 25+x04 1.1-4.1
EGC 14+0.1 0520 1.10+£040 030-270 20=*£0.8 1.0-36 11.1£35 42-156 23+x02 1728
EGCG 23+£02 1.6-32 0.12+003 0.03-038 05*£0.1 02-09 0.06=*=0.03 0.0-0.1 35203 2551
Gallic acid 1.6+02 13-1.5 4.00=£057 257-4.70 377+ 1.0 36.4-39.6 13x£01 1.1-15
Chlorogenic acid 1.0 0.26 0.3
Caffeic acid 14£0.6 0720 096*026 045-1.35 10.7
Ferulic acid 2.0 0.03 27.6 £17.6  3.1-61.7
Anthocyanins 1.5+04 0.7-4.0 0.03£0.02 0.001-0.20 04 +03 0.004-5.1
Proanthocyanidin dimers 2.0 0.02 £0.01 0.008-0.03

! All data were converted to correspond to a supply of 50 mg aglycone equivalent.

T time to reach C

max> max

AUC, area under the plasma concentration-time curve EGC, epigallocatechin.
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still scarce for hydroxycinnamic acids, and the calculated mean
values are probably not very reliable.

The mean area under the plasma concentration-time curve,
C,axo and urinary excretion values clearly show the lower ab-
sorption of rutin, compared with quercetin glucosides. Another
observation is that galloylation of epigallocatechin markedly
reduces its absorption. Gallic acid, quercetin glucosides, cat-
echins, free hydroxycinnamic acids, and anthocyanins, which are
absorbed in the small intestine or the stomach, reached C,,,, at
~1.5 h, whereas rutin and the flavanones hesperidin and narin-
gin, which are absorbed after release of the aglycones by the
microflora, reached C,,,, at ~5.5 h. The mean time toreach C,
for chlorogenic acid is surprising, because this compound also
must be hydrolyzed by the microflora before absorption. In the
sole study considered, however, chlorogenic acid was provided
as a liquid (coffee) to fasted volunteers, which might have ac-
celerated the absorption kinetics.

Relative urinary excretion is currently used to estimate the
minimal absorption rate but, when polyphenols are highly ex-
creted in bile, as for EGCG and genistein, absorption is under-
estimated. For most polyphenols, the urinary excretion values
were consistent with the plasma kinetic data. Values ranged from
0.3% to 43% of the intake, which demonstrates the great vari-
ability in the bioavailability of the different polyphenols.

With respect to the elimination half-lives, it appears that cat-
echins, gallic acid, and flavanones have no chance to accumulate
in plasma with repeated ingestion. Some of their metabolites may
have longer half-lives, however, and quercetin, with a longer
half-life, could accumulate in plasma with repeated ingestion.

Extensive variability was observed among the studies. Ten-
fold variations in the C,,, values were observed for most com-
pounds. Several factors may explain the variability, such as the
food matrix or background diet. Interindividual variations are
also important, and some people might have different levels of
metabolizing enzymes or transporters, enabling more efficient
absorption of polyphenols.

It is important to realize that the mode of calculation and
representation used in this review does not take into account the
mean dietary intake of each polyphenol. For example, even if
isoflavones are efficiently absorbed, they are usually not the
major circulating polyphenols in Western populations, because
the isoflavone intake is far lower than 50 mg/d for these popu-
lations. In contrast, a single glass of orange juice easily provides
50 mg hesperidin.

CONCLUSIONS

Bioavailability varies widely among polyphenols and, for
some of compounds, among dietary sources, depending on the
forms they contain. The plasma concentrations of total metabo-
lites range from O to 4 wmol/L with an intake of 50 mg aglycone
equivalents. The polyphenols that are most well absorbed in
humans are isoflavones and gallic acid, followed by catechins,
flavanones, and quercetin glucosides, with different kinetics.
The least well-absorbed polyphenols are the proanthocyanidins,
the galloylated tea catechins, and the anthocyanins. Data for
other polyphenols are still too limited. The plasma kinetics also
differ among polyphenol classes, with C,,, being reached after
~1.5hor ~5.5 h, depending on the site of intestinal absorption.
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This information should be useful for the design and interpreta-
tion of intervention studies investigating the health effects of

polyphenols. ¢ |
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