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Studies in our laboratory have provided evidence 
that an immune response against self-compounds
residing in damaged tissues of the central nervous
system (CNS) confers protection against destructive
self-compounds [1,2].

Our early studies of injury to myelinated 
CNS axons (optic nerve and spinal cord) showed that
the insult is followed by an accumulation of T cells at
the site of injury. Systemic injection of activated
T cells after injury led to an increase in the number of
accumulated T cells, regardless of their antigenic
specificity [3]. However, only T cells that encounter
their specific antigen at the lesion site are capable of
ameliorating the consequences of the insult [1].

Axonal insult in the CNS is followed by both
immediate degeneration and delayed (secondary)
degeneration (an insult-induced outcome of the hostility
of the nerve’s extracellular environment) [4–6]. T cells
specific to myelin-associated self-antigens or to
peptides derived from them are able to partially
counteract the secondary degeneration, thereby
improving recovery [1,7–10].

Subsequent studies revealed that the beneficial
effect of the autoimmune T cells was not merely the
outcome of an experimental manipulation, but the
result of a physiological response [11–13]. We showed
that the ability to resist the consequences of CNS
insults is T-cell dependent. Thus, rodents deprived of
T cells showed worse recovery from both glutamate
toxicity and axonal injury than matched wild-type
controls. Moreover, splenocytes withdrawn from rats
with injured spinal cords and passively transferred
into naïve rats were found to be neuroprotective [11].
This beneficial T-cell-mediated response has been
demonstrated as autoimmune in nature. Thus, the
response to axonal injury in adult rats that were
neonatally immunized (tolerized) to myelin-
associated self-proteins was significantly worse than
neonatally immunized with ovalbumin controls [2].

Additional studies showed diversity among strains
in their ability to manifest an insult-evoked
protective autoimmunity. Strains that are genetically
resistant to induction of experimental autoimmune
encephalomyelitis (EAE) on challenge with any
myelin antigen are also relatively resistant to the
consequences of CNS injury, and, as a corollary,
strains that are susceptible to EAE induction are less
resistant to injurious conditions [13]. Moreover,
susceptible strains deprived of T cells or neonatally
immunized with myelin did not differ in the recovery
from their matched controls. This finding indicated
that susceptible strains are deficient in their 
T cell-dependent protective mechanism [13].

Does protective autoimmunity apply only to insults to

myelinated axons or is it more generally applicable?

To determine whether the observed protective
autoimmunity is antigen-specific, it was examined
whether myelin-specific T cells are neuroprotective
against an insult inflicted at a site that is myelin-free.
The chosen model was that of retinal ganglion cells
directly exposed to toxic amounts of glutamate, a
major player in neurodegenerative conditions. In the
absence of T cells the ability to resist glutamate
toxicity was reduced [13,14]. These neurons, however,
unlike neurons affected by axonal injury, cannot
benefit from vaccination with myelin antigens [15].
Vaccination with dominant self-antigens residing in
the eye (inter-photoreceptor binding protein (IRBP)
and S-Ag, known to be associated with uveitis, a
common ocular autoimmune disease) was found to be
neuroprotective [16]. These findings led us to suggest
that for the T cells to display their neuroprotective
effect they need to be activated, and that their local
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activation demands specificity to antigens residing in
the site.According to this view, the protective
self-antigen and the antigen associated with
autoimmune disease development in a particular
tissue (although not necessarily their relevant
epitopes) are identical and are specific to the site and
not the type of lesion.

How can protective autoimmunity be reconciled with

previous theories of self/nonself discrimination?

Immunologists differ in their views of the
mechanisms needed to ensure nonresponsiveness to
self-antigens. Our view, based on our experimental
evidence suggesting that autoimmunity should be
constantly on alert for immediate protective action, is
that at least some self-reactive T cells are released to
the periphery after their positive selection in the
thymus for this protective purpose [2,10,13].

Elimination of self-reactive immune cells was first
described with respect to B cells [17–22]. This theory
was later also applied to T cells, when it was
postulated that autoreactive T-cell clones are
eliminated in the thymus [23,24]. Such deletion has
been widely viewed as one of the mechanisms for
avoiding autoimmunity, a response that until recently
was understood mainly in terms of an attack by the
body against itself. The assumption was that during
development of T cells in the thymus, autoreactive
clones that show high-affinity recognition of the
self-peptide in the MHC groove will be eliminated.
Bretscher and Cohn were the first to suggest that
discrimination of self from nonself may not be the only
mechanism for avoiding autoimmunity [25]. Janeway
postulated that discrimination of self from nonself is
based on the infectivity of the pathogen, and that the
immune system discriminates self, which is
noninfectious, from nonself, which is infectious [26].
Cohen, in his theory of the ‘immunological
homunculus’, suggested that some autoreactive
clones specific to dominant self-epitopes might be
positively selected by the body for the purpose of
regulation [27]. In 1994, Matzinger published her
‘danger’ theory [28], which postulates that any
immune response is accompanied by an autoimmune
response [29]. Later on, it was suggested that the
thymus is responsible for positive (on thymic
epithelium) and negative (on hemopoietic cells within
the thymus) selection [30–32]. Modigliani et al.
postulated that the factor determining whether
thymic selection will be positive or negative is the
avidity of the interaction between the antigen-
presenting cells (APCs) residing in the thymus and
the immature T cells [33]. For a given T-cell receptor
(TCR) and MHC–peptide complex, the avidity of the
interaction is defined as the product of the affinity of
the TCR for the MHC–peptide complex and the
number of copies of this complex expressed on the
selecting cells [33]. Among the positively selected
T cells, those with higher avidity would exit the
thymus as activated cells, and that these T cells

would act as suppressors in the periphery. This led to
the suggestion that an additional population of T cells
(CD4+) exits the thymus and serves a suppressive
function in the periphery [34].

CD4+ suppressor T cells were recently identified as
naturally occurring T cells constitutively expressing
CD25 markers [35,36]. It was suggested that the 
role of these thymus-derived regulatory T (Tr) cells is
to ensure peripheral tolerance to potentially
auto-aggressive T cells that escaped deletion in the
thymus [37,38]. This suggestion was primarily based
on the widely accepted notion that for the individual’s
best adaptation, autoimmune T cells should be
maintained in a state of tolerance, anergy or general
nonresponsiveness.

Tr cells as natural inhibitors of protective autoimmunity

Our data suggested that the preferential state of
autoimmunity is not nonresponsiveness but the
availability of autoimmune effector T cells that are
suitably regulated and on alert for low-threshold
activation by their relevant antigens. We found that
animals deprived of Tr cells recovered better from
CNS insults than their matched controls [36]. More
direct proof of the suppressive effect of the Tr cells on
spontaneously evoked T-cell-dependent protective
immunity came from the finding that nude mice
replenished with splenocytes from wild-type mice
deprived of CD4+CD25+ T cells recovered better from
CNS insult than either wild-type or nude mice
replenished with a whole splenocyte population. In
addition, wild-type mice injected immediately after
injury with CD4+CD25+ T cells recovered worse than
wild-type mice that were not injected or which were
injected with a population of CD4+C25− T cells
(i.e. effector cells) [2]. The general belief is that
Tr cells act specifically on autoantigens and limit 
the autoaggressive response in space or time or 
both [39–41]. Therefore, it is possible that the
elimination of Tr cells immediately after an injury
allows rapid activation of the relevant autoimmune
clones. The suppression induced by the Tr cells might
be mediated through cytokines [transforming growth
factor (TGF)-β or interleukin (IL)-10] or cell−cell
contacts or both [42–46]. We suggest that the
presence of Tr cells, regardless of their mechanism of
action, represents a compromise between the need for
autoimmune T cells and the need to avoid
autoimmune disease. Thus, in contrast to common
hypotheses in which naturally occurring Tr cells are
perceived as a safety mechanism developed through
evolution for the purpose of avoiding autoimmunity,
we postulate that these T cells developed with the
purpose of allowing the existence of well-regulated
autoimmunity without the risk of autoimmune
disease. We envisage a competition between two 
types of potential ‘enemies’ that emerge within the
body in response to CNS insult, namely destructive
self-compounds and autoimmune T cells of
destructive (disease-causing) potential. The naturally
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occurring CD4+CD25+ Tr cells are the cells that
maintain a balance and ensure that the competitor
with potentially positive input will prevail. The
presence of Tr cells, according to our view, is to allow
‘differential activation’of some but not all of the
autoimmune effector T cells. The ratio between the
numbers of regulatory and effector cells determines

the intensity, time of onset and duration of the
autoimmune response (Fig. 1), which in turn
determine whether it will fall within the therapeutic
window of the particular insult. This might explain
why transgenic mice that overexpress the TCR for
myelin basic protein (TMBP/Reg+), having a relatively
large number of Tr cells, recover better than the
wild-type from optic nerve injury [11], but not from
spinal cord injury [47]. The constitutive ratio of
Tr cells (such as CD4+CD25+ T cells) to autoimmune
effector T cells in the periphery depends on the
affinity and abundance of the epitope that was
presented on APCs in the thymus.

The probability of finding effector T cells with high
affinity for a particular epitope in the periphery is
inversely related to the abundance of that epitope on
thymic APCs. According to this view, it is possible that
in strains that lack the ability to spontaneously
manifest a protective autoimmunity (and, as a
corollary, are relatively susceptible to autoimmune
disease development), the repertoire of antigens
presented in the thymus differs from that in relatively
resistant strains, and consists predominantly of
epitopes characterized by high-affinity interaction
with MHC class II molecules. Therefore, most of the
T cells in the periphery of susceptible individuals will
either be Tr cells (if not deleted), or high-affinity
effector cells that have escaped deletion. Thus, under
normal circumstances, the autoimmune effector
T cells found in the periphery will be tightly regulated
by the abundant Tr cells. As a result, when a
protective autoimmune response is needed it will be
evoked relatively late, and may not occur within the
therapeutic window, at least if the insult is acute.
Once the regulatory network has broken down
(for example, as a result of immunization in which the
inoculum is used in conjunction with a strong
adjuvant), the autoimmune activity of the released
effector T cells will be directed mainly to the same
dominant epitopes, and therefore as well as leading to
potential protection, will also probably lead to the
development of an autoimmune disease. According to
our hypothesis, and in line with the experimental
evidence, such individuals will not only be prone to
autoimmune disease, but will also possess only a
limited ability to spontaneously manifest protective
autoimmunity [13].

According to this perception, the two phenomena –
the one traditionally viewed as peripheral tolerance
to self and the other proposed here as the
maintenance of self-reactive clones on alert for
protective action – are both dependent on the same
mechanism, and although they both relate to the goal
of avoiding autoimmune disease, they differ with
regard to the perception of autoimmunity that they
reflect. From an evolutionary perspective, it seems
that it would have been too great an investment if the
sole function of the naturally occurring Tr cells had
been to paralyze ‘escapees’ (autoimmune T cells that
succeeded in escaping to the periphery).
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Fig. 1. Insult to the central nervous system (CNS) triggers a local self-destructive process and innate
immune response that is beneficial in its purpose if well-controlled, but is too weak and needs to be
amplified. CNS injury triggers local changes that cause secondary degeneration. Among the
mediators of degeneration are destructive self-compounds, such as physiological substances
(e.g. glutamate) present in toxic excess of their normal concentrations, and compounds associated
with oxidative stress. In addition, the injury triggers a local innate response in which microglia are
major players, capable of acting as antigen-presenting cells (APCs), phagocytic cells or neutralize
significant amounts of toxic molecules [i.e. Glu, nitric oxide (NO)] [50,51]. The injury also activates an
autoimmune T cell normally kept in the periphery in a suppressed state because of CD4+CD25+

regulatory T (Tr) cells (a). In the absence of a systemic autoimmune response, the local innate
response is not strong enough to overcome the local destructive response, and the tissue
consequently undergoes secondary degeneration. If the stress signal evoked by the injury is sufficient
to overcome the suppression maintained by the CD4+CD25+ Tr cells, an autoimmune response will be
activated. Autoimmune effector T cells will then home to the damaged CNS, where they will
encounter their specific antigens presented on APCs, and will therefore be activated locally. The
activated T cells will secrete cytokines and other soluble factors, thus amplifying and regulating the
local innate immune response (b). Thus, a timely and efficient innate response will outweigh the local
threat of the self-destructive response, attenuate secondary degeneration and protect neurons that
escaped the initial injury.
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Protective autoimmunity – its role and mechanism

In our view, the function of autoimmunity is to
augment the body’s defense against the threat posed
by its own destructive self-compounds. Thus, an
important task of the anti-self T cells is to control local
innate immune cells, such as the phagocytic cells that
clear the damaged area of potentially destructive
self-components, such as cell debris and other
threatening matter [48]. This clearance service does
not come free of charge. The potential damage
because of harmful self-compounds is averted at the
expense of the damage caused by the immune activity
itself (U. Nevo et al., unpublished). At an early stage
of our work we suggested that this particular damage
might be part of the mechanism of the repair itself, in
that it contributes to the repair. Thus, for example, on
observing that myelin basic protein (MBP)-specific
autoimmune T-cell line cause a transient reduction in
conductivity [1], we postulated that this transient
reduction serves a useful purpose, as it has a
hypothermia-like effect, which reduces energy
consumption. Whether the cost is part of the
mechanism, or is an inevitable negative side effect,
remains to be resolved. Our current results suggest
that autoimmunity implies the well-controlled ability
to direct ‘amplifiers’ (autoimmune T cells) of the local
innate response to the lesion site. It therefore seems
that antigenic specificity determines the homing of
T cells and their subsequent reactivation at the site of
injury. Our data strongly suggest that Th1 cells are
indeed necessary for protection [11]. Moreover IFN-γ,
the cytokine that is most prominent in Th1 cells,
activates the resident microglia in such a way that
they become effective APCs, which further amplify
the innate response (Shaked et al., unpublished) [48].
At this stage it is not clear whether beneficial
autoimmunity is applicable to other tissues or is
manifested only in the brain and the eye. If the above
scenario is an accurate reflection of reality, this would
mean that the difference between ‘good’and ‘bad’
autoimmunity lies not in the types of cells, but in their
amounts and the duration of their activity (Fig. 1).
Future studies should investigate the possibility that

this phenomenon applies to different insults (whether
trauma- or microbe-induced) and to tissues other
than neural tissue. For example, microbe-induced
damage might not only trigger an immune response
against the invaders, but could also activate a
purposeful autoimmune response, similar to the
induction of an autoimmune response by a traumatic
injury [49], designed to cope with the consequences of
the microbe-induced damage to the tissue.

Concluding remarks

According to our proposal, immunity and
autoimmunity are two arms of the body’s protective
apparatus, making use of the same players, language
(cytokines) and physiological devices (such as
recognition of APCs). These two arms are thus similar
in their technical operation but guided by different
fundamental principles in terms of activation and
regulation. In principle, the best form of adaptation
for prevention of autoimmune disease would be
deletion in the thymus of all self-reactive T cells.
Alternatively, the best form of adaptation for coping
with adverse conditions (such as CNS injury) would
be the opposite – positive selection of all self-reactive
T cells, including those directed to dominant epitopes,
without any inhibitory peripheral regulatory
network. We suggest that the evolutionary resolution,
in the interests of optimal day-to-day maintenance of
these two conflicting requirements, has resulted in
deletion of effector T cells specific to extremely
dominant epitopes in the thymus and, as an
additional safely measure, the development of a
naturally occurring regulatory mechanism. This
optimal solution, however, is apparently insufficient
in cases of trauma or other extreme situations that
lead to ongoing degeneration requiring either
upregulation of autoimmune effector T cells or
downregulation of regulatory (suppressor) T cells. As
a classic illustration of Darwin’s theory of natural
selection and survival of the fittest, it appears that
avoiding risk (autoimmune disease) to healthy
individuals is more important than helping injured
individuals to survive.
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