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Purpose of review

Advanced immunopathological techniques hold promise for

more precise diagnosis of idiopathic demyelinating

diseases of the central nervous system. We review recent

progress in differentiating and understanding the disease

mechanisms of acute disseminated encephalomyelitis,

neuromyelitis optica, and classical multiple sclerosis.

Recent findings

Four distinct immunopathological patterns have been

described in multiple sclerosis patients, potentially

implicating different inflammatory, demyelinating, and

apoptotic mechanisms. A specific serum biomarker,

neuromyelitis optica immunoglobulin G, is strongly

associated with neuromyelitis optica and identifies patients

with severe optic nerve and spinal cord lesions with specific

pathological features such as eosinophilic and neutrophilic

inflammatory infiltrates, necrosis, vascular hyalinization, and

extensive vasculocentric immunoglobulin and complement

deposition. This biomarker targets the water channel

aquaporin-4, which is lost in neuromyelitis optica lesions.

Acute disseminated encephalomyelitis still has no validated

clinical diagnostic criteria but its perivenous pathological

findings distinguish it from multiple sclerosis and

neuromyelitis optica.

Summary

The clinically heterogeneous group of idiopathic

inflammatory demyelinating diseases of the central nervous

system is characterized by several immunopathological

patterns that suggest the involvement of diverse pathogenic

effector mechanisms. Future advances in experimental

pathology, immunology, molecular genetics, and

neuroimaging, as well as the discovery of specific

biomarkers, will more precisely define these disorders and

lead to better targeted therapies.
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Abbreviations
ADEM a
orize
cute disseminated encephalomyelitis

CNS c
entral nervous system

CSF c
erebrospinal fluid

EAE e
xperimental allergic encephalomyelitis

IL in
terleukin

MAG m
yelin-associated glycoprotein

MHC m
ajor histocompatibility complex

MS m
ultiple sclerosis

NMO n
euromyelitis optica

OSE o
pticospinal experimental allergic encephalomyelitis
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Introduction
The inflammatory demyelinating diseases of the central

nervous system (CNS) are clinically heterogeneous with

respect to their mode of presentation, clinical severity,

rate of progression, and prognosis [1]. They are often

grouped together under the umbrella term of ‘multiple

sclerosis’ (MS). There is increasing evidence, however,

that clinically recognizable syndromes, such as acute

disseminated encephalomyelitis (ADEM) and neuro-

myelitis optica (NMO), are associated with distinct

immunopathological features. Herein, we review the

clinical and pathologic features that differentiate ADEM,

NMO, and MS, and discuss recent advances in under-

standing the immunopathogenesis of each of these

disorders.

Clinical diagnosis
The inflammatory demyelinating syndromes of ADEM,

NMO, and MS are typically diagnosed on the basis of

presenting clinical symptoms and signs, neuroimaging

features, laboratory characteristics, and clinical course,

especially the tendency to relapse. Comparative features

are summarized in Table 1; however, it is important to

note that no single clinical, neuroimaging, or cerebrosp-

inal fluid (CSF) feature defines a disorder with absolute

certainty.

Classical MS is highly variable in clinical presentation

and is usually a relapsing disease [2]. White matter lesions

localize to periventricular brain regions and those affect-

ing the spinal cord are usually less than one vertebral

segment in length [3,4]. Spinal fluid examination reveals

a normal cell count or only a mild lymphocytic pleocy-

tosis, and oligoclonal bands are present in 85–90% of

confirmed cases.
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Table 1 Comparison of the clinical, laboratory, and imaging features of multiple sclerosis (MS), neuromyelitis optica (NMO) and acute

disseminated encephalomyelitis (ADEM)

Characteristic MS NMO ADEM

Antecedent infection/immunization Variable (may trigger relapse) Absent Typical
Age Uncommon in children and

>50 years; median¼29 years
Any; median¼39 years Children and adults

Gender (F : M) 2 : 1 Up to 9 : 1 1 : 1.2
Clinical presentation Usually monosymptomatic Usually monosymptomatic;

sometimes simultaneous
myelitis and optic neuritis

Polysymptomatic

Typical attack severity Mild to moderate Moderate to severe Moderate to severe
Typical attack-related impairment None to mild Moderate to severe Mild to moderate
Clinical course 85% relapsing with most

developing secondary progression,
15% primary progressive

>85% relapsing Monophasic; rare
‘multiphasic’ or
‘relapsing’ ADEM

CSF cell count and differential <50 WBCs; lymphocytes Any; lymphocytes, sometimes PMNs >50 WBCs; lymphocytes
CSF oligoclonal bands 85% 30% Absent
Brain MRI lesion size, distribution,

gadolinium enhancement
Small to medium; asymmetric,

periventricular; variable
enhancement

None/punctate; subcortical, increase
with time; 10% meet MS criteria;
less than 10% hypothalamic/
thalamic/periependymal

Larger, fairly symmetric
and subcortical

Brain MRI gadolinium
enhancement

Variable None Relatively uniform

Spinal cord MRI Short lesions (up to two
vertebral segments)

Longitudinally extensive
(more than three vertebral
segments)

Variable

CSF, cerebrospinal fluid; WBC, white blood cell; PMN, polymorphonuclear cell.
NMO has become a rigorously defined clinical entity

with diagnosis strengthened by a highly specific serum

biomarker, NMO-immunoglobulin G (IgG), which tar-

gets the water channel aquaporin-4 [5,6,7��]. NMO is

recognized by its propensity to cause severe optic neuritis

and ‘longitudinally extensive’ transverse myelitis (associ-

ated with a spinal cord MRI lesion spanning three or

more vertebral segments) to the relative exclusion of

other CNS regions. The disorder is typically relapsing

[8��,9�], brain MRI is often normal at onset but accrues

white matter lesions over time (sometimes mimicking

classic MS), and the CSF may show a prominent

neutrophilic pleocytosis and usually lacks oligoclonal

bands.

The prevailing concept of the ADEM syndrome, which

may be more confidently diagnosed in children, is that of

a monophasic disorder characterized by a multifocal

clinical presentation (often following an infection or

vaccination), meningoencephalitic symptoms and signs

including encephalopathy, cerebrospinal fluid pleocyto-

sis without the presence of oligoclonal bands, and MRI

lesions involving deep grey and cortical structures as

well as the white matter [10]. Importantly, there is no

validated clinical definition of ADEM, with most recent

case series describing arbitrary clinical and imaging

features. Furthermore, reports of multiphasic or recurrent

forms of ADEM serve to complicate the nosology of

demyelinating diseases by failing to convincingly dis-

tinguish these disorders from classical MS [11–13]. Even

in childhood, cases of ADEM frequently evolve into a

disorder highly consistent with relapsing–remitting MS

[14,15].
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Immunopathogenesis of multiple sclerosis
Key pathological features of MS, NMO, and ADEM are

summarized in Table 2. The chronic inactive MS plaque

is a sharply demarcated hypocellular lesion containing

gliosis, variable axonal loss, reduced density of oligoden-

drocytes, variable amounts of inflammation (often peri-

vascular) and evidence for remyelination, but without

evidence of active demyelination [16�]. Active inflam-

matory demyelinating lesions characteristically show

perivascular inflammation of variable degree together

with lipid-laden macrophages and large reactive astro-

cytes. Although this background inflammation containing

T lymphocytes and macrophages consistently underlies

active MS lesions, evaluation of the earliest lesions from

biopsy or autopsy material demonstrates significant

pathological heterogeneity classifiable into four distinct

patterns [17,18]. Pattern I refers to focal demyelinated

lesions associated with macrophage and T lymphocyte

infiltration. Pattern II includes additional features such as

immunoglobulin deposition and complement activation

at sites of active myelin breakdown. Both patterns are

associated with loss of all myelin-related proteins, lesions

centered on blood vessels, sharp plaque borders, and

extensive remyelination. Pattern III lesions are also

inflammatory but have ill-defined plaque borders, and

often demonstrate myelin sparing around blood vessels.

These lesions are characterized by a selective loss of

myelin-associated glycoprotein (MAG), reduction in oli-

godendrocyte density, oligodendrocyte apoptosis, and

minimal remyelination. The selective loss of MAG is

interpreted as evidence for a dying-back oligodendroglio-

pathy, since MAG localizes to the most distal extension of

the oligodendrocyte cell body. Pattern IV lesions show
rized reproduction of this article is prohibited.
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Table 2 Pathologic features of multiple sclerosis (MS), neuromyelitis optica (NMO) and acute disseminated encephalomyelitis

(ADEM)

Characteristic MS NMO ADEM

Lesion number/location Variable number; white>>grey
matter of brain, optic nerves
and spinal cord

Usually few; predilection for optic
nerves and spinal cord grey
and white matter (longitudinally
extensive), variable brain lesions

Multifocal/diffuse; white
and grey matter of brain,
optic nerves, and spinal
cord

Lesion age Heterogeneous Heterogeneous Uniform
Perivascular infiltrates Variable, perivenular Scant, variable Variable
Infiltrate cell types Macrophage> lymphocyte;

CD8þ>CD4þ
Macrophage> lymphocyte; PMNs,

including eosinophils may
be present

Macrophages and
lymphocytes

Perivascular IgG and complement Confluent and extensive Confluent and extensive Limited and perivenular
Character and degree of

demyelination
Variable, mild Present Present

Extent of acute axonal injury Variable, usually mild Severe Minimal

PMN, polymorphonuclear cell; IgG, immunoglobulin G.
evidence of nonapoptotic oligodendroglial death in the

adjacent normal-appearing periplaque white matter,

possibly owing to metabolic or toxic factors, but the

responsible mechanisms are not known. Overall, all

active lesions from a given patient adhere to one lesional

classification suggesting inter-individual, but not intra-

individual, heterogeneity in demyelinating mechanisms

in MS. Recent data suggest that biopsy-evaluated

patients, despite their severe or atypical disease presen-

tation, have MRI features and a subsequent clinical

course similar to that of other MS patients [19].

The immunopathogenetic hypotheses about MS must

account for the inflammatory CNS lesions, the later

development of secondary progressive disease, and the

lesional heterogeneity outlined above. It is postulated

that several elements of the immune response in MS are

governed by activated helper T-cell subsets, termed Th1

[which produce mainly proinflammatory cytokines such

as interleukin (IL)-2, tumor necrosis factor-a (TNFa),

and interferon-g (INFg)] and Th2 (producing mainly

antiinflammatory cytokines, such as IL-4, IL-5, IL-6,

IL-10, and IL-13) [20]. The initial step in development

of an inflammatory MS lesion is considered to be acti-

vation of circulating autoreactive T lymphocytes by

factors such as infection, superantigen stimulation, or

effects of reactive metabolites or metabolic stress. These

activated T lymphocytes interact with endothelial sur-

face integrins [e.g. very late antigen-4 (VLA-4)] to injure

and breach the blood–brain barrier, with injury mediated

in part through matrix metalloproteinases (MMPs), in

particular, MMP-9. Upregulation of endothelial adhesion

molecules [e.g. intercellular adhesion molecule-1

(ICAM-1), vascular cell adhesion molecule (VCAM-1),

and E-selectin] permits further ingress of pathogenic

inflammatory cells. The trimolecular complex of the

T-cell receptor, major histocompatibility complex

(MHC) molecule, and the presented antigen serves to

activate antigen-specific T cells. CD4þ T lymphocytes

recognize antigens in association with MHC class II
opyright © Lippincott Williams & Wilkins. Unauth
molecules and CD8þ T lymphocytes do so with MHC

class I molecules; both interactions are assisted by costi-

mulatory molecules such as CD40/CD40 ligand or B7-1

and B7-2/cytotoxic T-lymphocyte antigen-4. Once acti-

vated, CD4þ T lymphocytes in MS appear to develop a

Th1-dominant profile with upregulation of IL-2, IFNg,

and TNFa. Their cytokines activate macrophages, which

play a direct role in demyelination. Other factors

contributing to myelin and axonal injury may include

production of demyelinating antibodies, direct toxicity

of proinflammatory cytokines, chemokines, and other

soluble mediators, cytotoxic CD8þ T-lymphocyte/

MHC class I-mediated injury, production of reactive

oxygen and nitrogen species, excitotoxic glutaminergic

mechanisms, or oligodendrocyte injury [16�,21�,22].

There is increasing interest in the role of humoral immu-

nity in MS pathogenesis. Unknown elements of the CNS

immune response lead to intrathecal clonal B-lympho-

cyte expansion with production of IgG detected as CSF

oligoclonal banding. In MS lesions, antibodies and the

C9neo terminal lytic component of the complement

system are deposited along demyelinated segments

and within macrophages [17,23]. The presence of domi-

nant B-cell clonotypes in CSF and MS lesions supports

an antigen-driven selection process [24,25]. Recently,

B-cell-related cytokines such as tumor-necrosis factor

ligand superfamily member 13B (BAFF) have been

detected in MS lesions [26] and plasma blasts and plasma

cells noted in CSF [27]. Furthermore, anti-myelin oligo-

dendrocyte glycoprotein (MOG) antibodies have been

detected in MS lesions [28] and patient serum, although

the association of serum antibodies with clinical disease

has been inconsistent [29,30]. In sum, the findings sup-

port potential important roles for a humoral response in

MS pathogenesis but the specificity of the response has

not been identified.

Attention is also being paid to the factors responsible for

initiating and limiting CNS remyelination and repair and
orized reproduction of this article is prohibited.
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the development of progressive disease in later stages of

MS. Recent observations suggest important roles for the

following substances or mechanisms in remyelination

and repair: growth factors; chemokines; novel molecules

such as neurite outgrowth inhibitor (Nogo) receptor-

interacting protein 1, which influences axonal outgrowth

and myelin repair [31]; the Jagged-Notch signaling

pathway important for oligodendrocyte differentiation

[32]; and oligodendrocyte recruitment and signaling

mechanisms. One proposed model of the development

of progressive MS summarizes the effects of early and

recurrent inflammation, demyelination, oligodendrocyte

loss, complement deposition, and local axonal loss, lead-

ing to perpetuation of abnormal local and regional micro-

environments that result in eventual failure of neural,

axonal and oligodendroglial trophic and structural mech-

anisms [33�].

The inciting antigen responsible for the putative auto-

immune pathogenesis of MS has not been identified,

leaving a substantial gap in the inferences that can be

made from animal models, in-vitro experiments, and

human blood, CSF, and pathological data. Other

elements of the pathophysiological processes described

above, however, are consistent with the therapeutic

benefits of drugs with known select mechanisms of

action. For example, b-interferons, which reduce relapse

rate and severity, are potent MMP-9 inhibitors and may

limit CNS T-lymphocyte infiltration and cytokine pro-

duction [34]. Natalizumab, a powerful VLA-4 inhibitor,

reduces clinical relapse rate and accumulation of MRI

lesions [35,36��,37]. There may be a role for treatment of

MS with rituximab, a chimeric human/murine anti-CD20

monoclonal antibody that selectively depletes B lympho-

cytes, because of the humoral immune involvement in

MS pathogenesis. Current immunomodulatory therapies

have modest impact on secondary progressive MS,

indicating that they fail to influence the major pathways

leading to progression or that those mechanisms have

triggered irreversible injury [38]. Advances in under-

standing the very earliest disease pathways, especially

the identification of responsible autoantigens, will

increase the chances of greater therapeutic successes in

the future.

Immunopathogenesis of neuromyelitis optica
Most data support a humoral basis for NMO pathogen-

esis, including associations with systemic autoimmune

diseases and myasthenia gravis, therapeutic response to

plasmapheresis, and immunological and immunopatho-

logical findings [39–41,42�,43�]. Severe inflammation and

demyelination in optic nerve and longitudinally exten-

sive spinal cord lesions is often accompanied by necrosis

and cavitation [40]. Eosinophils and neutrophils may

predominate in the inflammatory infiltrates of active

NMO lesions [40,44] and this pattern may be associated
opyright © Lippincott Williams & Wilkins. Unautho
with IL-17/IL-8 axis activation [45]. Penetrating spinal

vessels are often irregularly thickened and hyalinized

[40,46]. These features are not seen in classical MS.

Active NMO lesions also exhibit immunoglobulin and

complement deposition in a characteristic vasculocentric

‘rim’ and ‘rosette’ pattern that is quite distinct from the

pattern of immune complex deposition along myelin

sheaths and within macrophages observed in the ‘pattern

II’ described in MS lesions [17,40,46].

The serum autoantibody marker NMO-IgG is about 73%

sensitive and more than 90% specific for clinically

defined NMO [6]. The biomarker selectively binds to

the abluminal surface of microvessels, pia, subpia and

Virchow-Robin sheaths in a pattern reminiscent of the

distribution of immune complex deposition in NMO

patients’ spinal cord tissues. A clue to the identification

of the NMO-IgG target antigen came with the recog-

nition that NMO-IgG immunoreactivity also included

renal distal collecting tubules and basolateral membranes

of gastric mucosal epithelium, regions that contain sub-

stantial concentrations of the water channel protein aqua-

porin-4. Aquaporin-4 is the most abundant CNS water

channel and is important for maintaining water homeo-

stasis during stresses such as ischemia or inflammation

[47,48]. Interestingly, it is not expressed in myelin or

oligodendrocytes; rather, it is anchored by the dystrogly-

can protein complex within the plasma membrane of

astrocytic foot processes facing microvessels and pia

(the ‘glia limitans’) and in the basolateral domain of

ependyma [48]. The regions of high aquaporin-4 density

correspond to sites of intense NMO-IgG immunoreac-

tivity. The antigenic specificity of aquaporin-4 was

demonstrated in a series of experiments showing absence

of this immunoreactivity in transgenic aquaporin-4-

knockout mouse tissues and selective aquaporin-4 immu-

noprecipitation from an aquaporin-4-transfected cell line

that coexpressed dystroglycan complex proteins that are

related to aquaporin-4 [5]. MRI studies of NMO patients

demonstrate that a specific lesional pattern colocalizes

with aquaporin-4 distribution in the CNS, specifically in

the regions of the hypothalamus and periependymal areas

such as near the fourth ventricle [8��,9�]. Several groups

have since replicated the strong and specific association

of NMO-IgG/anti-AQP4 antibodies with both NMO and

longitudinally extensive transverse myelitis [49–52].

It has not yet been proven that NMO-IgG causes NMO,

but Lennon and colleagues [5] hypothesized that a small

fraction of peripherally circulating aquaporin-4-specific

IgG that gains entry to the CNS via a relatively suscept-

ible or breached blood–brain barrier would immediately

encounter aquaporin-4, resulting in complement acti-

vation, cross-linking of aquaporin-4, or both, thereby

directly perturbing CNS water homeostasis [5].

This mechanism would also explain the lack of CSF
rized reproduction of this article is prohibited.
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oligoclonal banding in NMO because intra-CNS clonal

B-cell expansion would not necessarily occur in this

peripherally driven process. Preliminary in-vitro studies

have since shown that application of serum IgG derived

from NMO patients to living aquaporin-4-transfected

cells results in IgG binding to the extracellular domain,

activation of the membranolytic complement cascade,

and endocytotic downregulation of surface aquaporin-4

[53]. In addition, the ‘rim’ and ‘rosette’ immunoglobulin

staining patterns in NMO pathology specimens corre-

spond to regions of high aquaporin-4 expression in normal

astrocytic endfeet. Unlike MS lesions, NMO lesions

demonstrate a striking loss of aquaporin-4 [54�], inde-

pendent of stage of demyelinating activity, necrosis, or

site of CNS involvement [55]. Furthermore, a novel

NMO lesion type in the spinal cord and medullary

tegmentum with extension into the area postrema is

characterized by aquaporin-4 loss, inflammation,

edema, and intense vasculocentric immune complex

deposition [55]. Collectively, these findings suggest that

a complement-activating, anti- aquaporin-4 antibody

(NMO-IgG) has the potential to cause at least

some of the primary immunopathological features of

NMO.

Future development of an animal model of aquaporin-4

autoimmunity is required to further investigate the

possibility that NMO-IgG causes NMO. Although such

a model has not yet been reported, recent work in the

field of experimental allergic encephalomyelitis (EAE), a

putative animal model of human CNS demyelinating

disease, resulted in production of a mouse model with

spontaneous autoimmune CNS demyelination with an

optic-spinal NMO-like lesion distribution pattern. This

model, termed opticospinal EAE (OSE) by one group

[56�], may represent an important advance in how such

topographically restricted pathological patterns are

generated [57�]. Independent laboratories determined

that double-transgenic mice expressing T and B-cell

receptors that recognize MOG can develop spontaneous

inflammation of the optic nerves, spinal cord, meninges,

and parenchyma [56�,58�]. A mixture of Th1 and Th2

cytokines, including IFNg, IL-5, and IL-17, were

detected in affected tissues and cell cultures. The

OSE model lacks certain characteristics of human

NMO, including immunoglobulin and complement

deposition within lesions, longitudinally extensive spinal

cord lesions, and anti-aquaporin-4 antibodies [57�].

Nevertheless, OSE illustrates the ability of some B cells

to act as antigen presenting cells. These findings may also

demonstrate that several pathogenic pathways, poten-

tially independent from aquaporin-4-related mechan-

isms, can generate relatively restricted optic-spinal

disease. One human CSF microarray study has shown

the potential for identifying other candidate autoantigens

associated with the NMO phenotype [59�].
opyright © Lippincott Williams & Wilkins. Unauth
The discovery of NMO-IgG has allowed further infer-

ences about the true scope of the clinical disease. Patients

with Asian optic-spinal MS are NMO-IgG seropositive

approximately as frequently as North American NMO

patients and have pathological features similar to NMO,

indicating the disorders may well be identical [6,60�,61�].

Furthermore, patients with systemic lupus erythemato-

sus or Sjögren’s syndrome are uniformly NMO-IgG

seronegative unless they have the neurological NMO

syndrome. In contrast, NMO patients frequently harbor

multiple serum autoantibodies, including antinuclear

antibody and extractable nuclear antigen (such as SSA

and SSB), suggesting that in most instances NMO

coexists with lupus or Sjögren’s syndrome rather than

occurring as a vasculitic complication of those systemic

diseases.

Recent observations indicate that secondary progressive

NMO is quite uncommon [62]. If occurrence of inflam-

matory relapses were a key mechanism in triggering a

later degenerative process, one would expect an earlier

and higher rate of conversion to secondary progressive

disease in NMO and compared with MS owing to the

severe and frequent nature of early relapses. These

observations contribute to evidence that dissociates

inflammatory relapses from degenerative progression in

CNS demyelinating diseases.

Immunopathogenesis of acute disseminated
encephalomyelitis
The immunopathogenesis of ADEM is the least well

developed of the syndromes owing to the lack of a

validated clinical disease definition. Autopsy studies dat-

ing from the 1920s describe a diffuse pattern of perive-

nular inflammation and demyelination affecting the brain

and spinal cord after small pox vaccination or measles,

mumps, and rubella vaccination or infection [63,64].

Similar cases were reported without a clear preceding

infection or history of immunization. In recent years, few

case reports document pathological findings in associ-

ation with an ADEM diagnosis.

The distinct findings in pathologically confirmed cases of

ADEM are ‘sleeves’ of demyelination that surround

venules and are associated with significant inflammatory

infiltrates dominated by macrophages [63]. These lesions

are distributed throughout the brain and spinal cord and

appear of similar histological age. The meninges

(lymphocytes) and subpial regions (microglia) may also

be inflamed. The lesions may be further differentiated

from MS in that their margins are rather indistinct in

contrast to the usual well demarcated leading edge of a

demyelinating MS plaque [65,66]. Further studies of

biopsy or autopsy specimens from patients studied with

contemporary neuroimaging and CSF examination are

required to determine whether this pathological pattern
orized reproduction of this article is prohibited.
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underlies the monophasic, multiphasic, and relapsing

ADEM syndromes reported in more recent literature

[10,14,67].

The animal models of encephalomyelitis, especially EAE

and Theiler murine encephalomyelitis, have long been

utilized to make inferences about MS disease mechan-

isms but probably have greater relevance to ADEM

[68�,69]. In EAE, animals are immunized with a combi-

nation of either homogenized CNS tissues or encepha-

litogenic myelin peptides with Freund adjuvant, result-

ing in a monophasic syndrome of motor weakness and

incontinence associated with diffuse CNS inflammatory

demyelination with a pattern most closely resembling

human ‘pattern I’ active demyelinating MS lesions. EAE

induced using MOG can result in a pathological pattern

resembling human ‘pattern II’ pathology [70]. Another

animal model, putatively mimicking postinfectious

ADEM, is created by direct inoculation of genetically

susceptible mice with Theiler murine encephalomyelitis

virus, inducing widespread CNS inflammatory demyeli-

nation [71]. Translation of studies of these models to

human ADEM indicates that mechanisms such as mol-

ecular mimicry or direct CNS infection with a secondary

inflammatory cascade may play leading roles in ADEM

pathogenesis. Introduction of pathogens to the CNS may

result in tissue damage with leaking of autoantigens into

the systemic circulation where they are processed by

peripheral immune mechanisms, leading to a self-

directed autoimmune attack against the CNS driven

by encephalitogenic T cells. The molecular mimicry

hypothesis suggests that structural similarities between

the pathogen and the host are sufficient to induce T-cell

activation but not sufficient to induce tolerance [72].

Activated T cells (and secondarily activated B cells)

may then reactivate when encountering local antigen

presenting cells while patrolling the CNS. ADEM associ-

ated with vaccines may be related to contamination with

myelin antigens from CNS culture tissue [73,74]. Recent

data suggest that Th1 and Th2-related chemokines are

produced in ADEM and MS but that relatively selective

upregulation of chemokines active on neutrophils and

Th2 cells may occur in ADEM [75,76]. Preliminary

studies also support involvement of MMP-9 and

ICAM-1 in the ADEM immune response [77�,78].

Conclusion
Improvements in neuroimaging and laboratory tech-

niques, especially immunopathology and development

of specific biomarkers, promise to further clarify the

nosology of CNS demyelinating diseases. The momen-

tum of recent research suggests that NMO may be the

first of the disorders to be confirmed as a distinct clinical

and immunopathological entity with a known cause.

Much more work is needed in the area of ADEM, where

clinical diagnosis and lack of readily available CNS
opyright © Lippincott Williams & Wilkins. Unautho
pathology hinders addressing important issues, such as

the clinical spectrum of disorders associated with

perivenular encephalomyelitis and identifying the under-

lying mechanisms of ‘multiphasic’ and ‘relapsing’

ADEM. Clinical and neuroimaging phenotypes are likely

to overlap amongst these disorders regardless of their

working definitions, but careful clinicopathological

correlations should help overcome some of these

challenges.
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